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SUMMARY

Many tasks in statistics and machine learning depend on accurately modeling data distributions.

In real-world settings, data distributions often evolve with time and many applications require us

to detect when data distributions change. The statistics community has extensively developed

methods that allow us to detect these changes. Distributional changes are also relevant for time

series machine learning tasks as class labels often change when underlying distributions change.

This thesis explores the interplay between change-point detection and machine learning. We

propose new methods which show how change-point detection can be of benefit to machine learn-

ing, and in return, how machine learning can be of benefit to change-point detection. We discuss

these contributions in four main chapters.

In the first chapter, we propose a new sequential change-point detection method called “Data

adaptive symmetrical CUSUM” (DAS-CUSUM) [1, 2]. The change statistics produced by DAS-

CUSUM are symmetrical which means that the change statistic for a change from distribution θ0

to distribution θ1 would be equal to the change from θ1 to θ0 .This makes it easier to set a detection

threshold for detecting multiple change points. In the second chapter, we show how unsupervised

change point detection methods can provide weak supervision for time series classification tasks.

This weak supervision can be used in conjunction with available labels for semi-supervised time

series classification which can help alleviate challenges in obtaining expensive labeled data [3].

In the third chapter aim we propose a method that leverages supervision from true change-points

to devise improved change-point detection methods [4, 5]. We show that this supervision can be

used to learn a ground metric. This learned metric can be incorporated into change-point detection

methods which helps these methods ignore certain kinds of changes which are not of interest

to us. This is particularly useful when change-points have to be detected in multi-variate time

series signals. In the fourth chapter we propose a new method for unsupervised domain adaption

that we call “Selective screening and signal selection for time series domain adaptation” (SSSS-
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TSA). Supervised machine learning models often fail when the distribution of unlabeled test data

is different from labeled training data, Unsupervised domain adaptation methods try to adapt these

trained models to unlabeled test data. Different time series channels have different severity of

distribution shifts between training and target domains. Our method can ignore channels with

larger shifts. This leads to superior time-series domain adaptation performance.

These methods collectively show that change-point detection and machine learning methods

are mutually beneficial to each other.
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CHAPTER 1

INTRODUCTION

A fundamental task in statistics and machine learning is to understand properties of collected data.

One way to infer these properties is to model the data’s underlying distribution. Such models

provide us tools to summarize data, to make predictions, and to compare how different sets of

samples are related. These comparisons can help us identify anomalous data samples.

We can illustrate this through an example. Consider a clinical trial studying a drug’s effect

on blood pressure. Researchers can measure blood pressure before and after drug administration,

and model the difference in these readings as a normal distribution. This distribution model serves

multiple purposes: it allows us to provide probabilistic predictions of a certain blood pressure

reduction for future patients. We can create a similar distribution model for a placebo group and

compare the two. This statistical distance between these models helps us gauge how effectively

the drug reduces blood pressure compared to the placebo. If the statistical difference between the

drug and placebo distributions is substantial, the drug model can be used to flag unusual data points

from other drugs, potentially indicating patients who might have taken a different drug.

Tools that model relationships between data samples are also of fundamental importance in ma-

chine learning. Supervised machine learning methods leverage optimization tools on large datasets

to train models that find associations between data and provided categories of interest. Similarly,

unsupervised methods try to learn models that cluster data into homogeneous regions such that

similar data is expected to be closer than dissimilar data in terms of statistical distance. Some

machine learning models, like variational autoencoders, explicitly model input data as normal dis-

tributions [6]. The input data is encoded by these models in such a way that similar data points are

associated with distributions which are relatively closer. For example, the distribution associated

with an input MNIST image sample for digit 1 would be closer to the distribution associated with
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input sample of 7 than the distribution associated with the number 6. Supervised labels are used

to learn associations between these encoded data distributions and provided class labels to solve

classification tasks. Other machine learning models, such as vanilla auto encoders, SVMs, and

neural networks directly model relationships between data samples and associated class categories

without explicitly modeling data probability distributions. These models still implicitly model data

distribution information when learning class association relationships.

In real-world settings, data distributions and subsequently, data properties change over time.

This is particularly true for time series datasets where samples at different instances have different

distributions. Consequently, these different distributions are associated with different class labels.

In temporal sequences, changes in distributions give meaning to different data categories. A DC

signal on its own doesn’t carry much value unless there is subsequent change in the signal over a

period of interest.

Changes in data distributions can also cause machine learning models to fail. This happens

because the relationships learned between data and labels might not hold true when the underlying

data patterns change. As a result, the model struggles to perform well on new data, failing to

generalize in real-world deployed settings.

Many events of interest are also associated with changes in data distribution. For example,

cyber attacks are accompanied by changes in network performance metrics. Abnormalities in

industrial processes are accompanied with changes in key process metrics such as pressure and

temperature. These scenarios require us to devise methods that can identify changes in data distri-

butions.

1.1 Change-point detection

Change-points are time instances where there is a change in the underlying distribution. For ex-

ample, Figure 1.1 shows a sequence in which initial points x1, x2, ..., xnc´1 are generated through

distribution fθ0 , where f could be a class of distributions, such as normal distribution, and θ are the
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Figure 1.1: An example of a Change-point at time instance nc

associated distribution parameters such as mean and variance. At time instance nc, the data gen-

erating distribution changes and subsequent data points xnc , xnc`1.. are generated from fθ1 . The

task of change-point detection is to identify the time instance, nc in this example, where the data

generating distribution changes.

Change-point detection has wide applications in time series analysis. They are often used to

segment time series data in intervals where data follows uniform properties(as they are generated

from the same distribution) [7]. Other applications, such as anomaly detection, utilize change-point

detection to identify instances of interest [8].

Broadly speaking, change-point detection is often categorized into two main categories: (1)

Offline change-point detection and (2) Online change-point detection,

In the offline setting, the complete sequence of interest is available to us when processing and

detecting change points [9]. In online settings, change-points have to be detected in newly revealed

data in streaming settings. In such streaming settings minimizing detection delay is critical.

Despite being developed almost 70 years ago, CUSUM is still a widely popular method for

detecting online change points [10].Based on sequential hypothesis tests of the log likelihood ratio

between post-change and pre-change data distributions, it’s optimality in minimizing detection
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delay for a given false positive rate have resulted in its wide usage, and numerous methods in

recent past continue to extend it for modern use cases [11].

However, such quickest change-point detection methods are often used to detect a single change

point. In many real-world applications, multiple change-points need to be detected in the quickest

way. Such settings often require change-point detection methods to run with minimal intervention,

giving rise to new challenges on how to set detection threshold for identifying multiple change

points in streaming settings in the quickest possible way. This leaves room for developing im-

proved methods that can effectively detect multiple change points quickly.

Another class of online change-point detection methods employ a statistical distance between

distributions computed over two sliding windows to detect change points [7, 12]. For such meth-

ods, the focus is not on detecting change points in the quickest possible manner. Instead, the

focus is on detecting multiple change points with a fixed detection delay, with the detection delay

equivalent to the window size being used.

What all these change-point detection methods have in common is that they are all funda-

mentally unsupervised. These methods try to detect how different two sets of samples are when

deciding if a change has occurred or not. In modern applications, with time series being very

high dimensional, what kinds of change-points to detect can be very subjective. Some applications

might require us to ignore certain types of changes in some dimensions while focus on identifying

certain other kind of changes. There has been very little work that explores how this can be done.

Most change-point detection methods detect all types of changes. This leaves room to develop

new class of change detection methods that can incorporate information on what kind of changes

should be detected and what kind of changes should be ignored.

As we discussed in the previous section, change-points are often associated with changes in

class categories. These changes provide information on how class labels change, information that

can be beneficial for machine learning tasks.
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RunningWalking Staircase

𝑡𝑖𝑚𝑒

Accelerometer data for activity classification

Figure 1.2: Accelerometer time series data where classes switch from walking to going down a
staircase to running. Supervised machine learning methods are required to classify data from each
class correctly.

1.2 Distribution changes and machine learning for temporal data

In the past few decades, the field of machine learning has become a dominant tool for identifying

patterns in data. For time series datasets, the categories of interest,and as a consequence corre-

sponding data distributions, change over time.

However, machine learning methods are mostly supervised. They require extensive examples

of what types of patterns need to be identified in time series sequences. Supervision from vast

labeled examples on the internet are at the heart of recent explosion in image classification and

large language models. Such extensive labeled examples are unfortunately not available when

developing time series classification models. As compared to image classification tasks, where the

underlying structure of natural images is similar, different time series classification tasks can be

very unrelated. Additionally, obtaining curated labeled datasets for training classifiers can be much

more challenging. Different applications require application specific labels, the nature of which

can vary a lot of between different applications. For example, the data associated with the task

of distinguishing abnormal heart beats from normal heart beats is a very different problem than

accelerometer data used for distinguishing running from bicycling. This underscores the need to

devise machine learning methods which are label efficient. There has been extensive work over the

past few decade exploring semi-supervised, and more recently, self-supervised methods to devise
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label efficient machine learning models [13].

Machine learning methods also assume that data distributions at train time and test time are

identical. A classifier that learns a function gϕ to map input X to output Y , i.e. gϕpXq “ Y

makes the underlying assumption that the relationship between inputs X and class categories Y

remains unchanged. These methods also make the assumption that the input output pairs (X and

Y ) contained in datasets used to train machine learning models capture all possible type of input-

output pairs a machine learning model would encounter when deployed in real world settings. This

often isn’t true as data encountered at test time can be different than data used for training. For

example a machine learning model trained to classify walking from jogging can fail when it is

used on new users who jog at a different pace. Such distribution shifts can cause machine learning

models to fail catastrophically [14].

1.3 Interplay between change-point detection and machine learning

Our discussion in the previous sections suggests that there are common themes between change-

point detection and machine learning. Figure 1.1 and Figure 1.2 show that both machine learning

and change detection require recognizing differences in data distributions. Change-point detec-

tion is concerned with detecting changes/separability in temporally adjacent distributions, while

machine-learning methods are concerned with finding separability between different distributions

encountered in a training set (either through supervision for distinguishing categories or unsuper-

vised clustering methods).

This common goal of finding separability between distribution provides promising grounds for

exploring ways in which machine learning and change point-detection can be mutually beneficial

to each other.

This thesis explores the interplay between machine learning and change-point detection, and

uses this interplay to devise new methods that utilize change-point detection for improving ma-

chine learning and in the reverse case, utilizes machine-learning to devise improved change point
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Change-point detection Machine learning for time series

Chapter 2
Symmetrical sequential change-point detection

Chapter 4
Supervised change-point detection

Chapter 3
Semi-supervised classification

Chapter 5
Channel selective unsupervised domain adaptation

Figure 1.3: Overview of thesis - this thesis explores how improving change point detection can
improve machine learning methods and in return, how can machine learning help improve change-
point detection

detection methods.

Figure 1.3 provides an overview of this thesis. Many of these contributions are a product of

exploring this mutually beneficial relation between change-point detection and machine learning

models which are represented by by the arrow signs.

This thesis consists of 4 main chapters, each of which that explores this interplay, and sees how

these can be mutually beneficial each other.

Improving Classical Change-point Detection Methods

Chapter 2: Data-adaptive Symmetrical CUSUM for Change-point Detection

Detecting change-points sequentially in a streaming setting, especially when both the mean and

the variance of the signal can change, is often a challenging task. A key difficulty in this context

often involves setting an appropriate detection threshold, which for many standard change statistics

may need to be tuned depending on the pre-change and post-change distributions. This presents a

challenge in a sequential change detection setting when a signal switches between multiple distri-

butions. For example, consider a signal where change-points are indicated by increases/decreases

in the mean and variance of the signal. In this context, we would like to be able to compare our

change statistic to a fixed threshold that will be symmetric to either increases or decreases in the

mean and variance. Unfortunately, change-point detection schemes that use the log-likelihood ra-

tio, such as CUSUM and GLR, are quick to react to changes but are not symmetric when both
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the mean and the variance of the signal change. This makes it difficult to set a single threshold to

detect multiple change-points sequentially in a streaming setting.

In this chapter we propose a modified version of CUSUM that we call Data-Adaptive Symmet-

ric CUSUM (DAS-CUSUM). The DAS-CUSUM change-point detection procedure is symmetric

for changes between distributions, making it suitable to set a single threshold to detect multiple

change-points sequentially in a streaming setting. We provide results that relate to the expected

detection delay and average run length for our proposed procedure. Extensive simulations are

used to validate these results. Experiments on real-world data further show the utility of using

DAS-CUSUM over both CUSUM and GLR.

Leveraging Change-point Detection for Improving Machine Learning

Chapter 3: Semi-supervised Sequence Classification through Change-point Detection

Sequential sensor data is generated in a wide variety of real-world applications. A fundamental

machine learning challenge involves learning effective classifiers for such sequential data. While

deep learning has led to impressive performance gains in recent years within domains such as

speech, this has relied on the availability of large datasets of sequences with high-quality labels. In

many applications, however, the associated class labels are often extremely limited, with precise

labeling/segmentation being too expensive to perform in a high volume. However, large amounts

of unlabeled data may still be available. In this paper we propose a novel framework for semi-

supervised learning in such contexts. In an unsupervised manner, change-point detection methods

can be used to identify instances where classes change within in a sequence. We show that change

points provide examples of similar/dissimilar pairs of sequences which, when coupled with class

labels, can be used in a semi-supervised classification setting. Pairs from labels and change points

are used by a neural network to learn improved representations for classification. We provide

extensive synthetic simulations and show that the learned representations are better than those

learned through an autoencoder and obtain improved results on simulations and human activity

recognition datasets.
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Leveraging Machine Learning for Improving Change-point Detection

Chapter 4: Learning Sinkhorn Divergences for Change-point Detection

As discussed previously, most existing methods for change point detection are unsupervised

and, as a consequence, lack any information regarding what kind of changes we want to detect or if

some kinds of changes are safe to ignore. This often results in poor change detection performance.

In this chapter we present a novel change point detection framework that uses true change point

instances as supervision for learning a ground metric such that Sinkhorn divergences can be then

used in two-sample tests on sliding windows to detect change points in an online manner. Sinkhorn

divergences are entropic regularized variants of Wasserstein distances [15]. As Wasserstein dis-

tances incorporate a ground metric, similar dissimilar pairs from change-points provide a natural

way to incorporate supervision through a learned metric. Our method can also be used to learn a

sparse metric which can be useful for both feature selection and interpretation in high-dimensional

change point detection settings. Experiments on simulated as well as real world sequences show

that our proposed method can substantially improve change point detection performance over ex-

isting unsupervised change point detection methods using only few labeled change point instances.

Adaptaing Temporal Machine-Learning Models to Distributional Changes

Chapter 5: Channel Selective Unsupervised Domain Adaptation

We also previously discussed how machine learning models fail when data distributions change.

Though we can use change-point detection methods for detecting when machine learning models

fail, the end goal is to develop models that adapt to distributional changes. This is the goal of unsu-

pervised domain adaptation. Unsupervised domain adaptation methods try to use available training

data in conjunction with unlabeled test data to improve model generalization in test time settings.

Such methods involve learning a model that tries to minimize classification loss on available train-

ing data while simultaneously minimizing a statistical distance between the labeled training and

unlabeled test time datasets.

Building generalizable and robust unsupervised domain adaptation methods for multivariate
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time series presents significant challenges, particularly due to variations in channel-level infor-

mation and shifts between training and testing sets. To overcome these obstacles, we introduce

a method called Signal Selection and Screening via Sinkhorn alignment for Time Series domain

Adaptation (SSSS-TSA) Our approach hinges on aligning learned representations of individual

channels while simultaneously aligning a pooled global representation across all channels. This

dual alignment strategy not only ensures effective adaptation to new domains but also maintains

robustness in scenarios with training and testing set shifts or when certain channels are absent

or corrupted. We evaluate our method on several time-series classification benchmarks and find

that it consistently achieves state-of-the-art performance. Furthermore, our results demonstrate

the importance of adaptively selecting and screening different channels to enable more effective

alignment across domains.

We end this dissertation with a chapter that discusses possible future directions in Chapter 6.
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CHAPTER 2

DATA-ADAPTIVE SYMMETRIC CUSUM FOR SEQUENTIAL CHANGE DETECTION

2.1 Introduction

For a sequence of observations x1, . . . , xt, the goal of change-point detection is to detect whether

there exists an instance nc such that x1, . . . , xnc´1 are generated according to a different distri-

bution than xnc , . . . , xt, and if so, estimating nc. This is typically accomplished by computing a

simple change statistic based on the log-likelihood ratio, which can be compared to a threshold to

detect changes or optimized to estimate nc. Sequential change-point detection involves sequen-

tially detecting multiple changes in streaming data. Many real-world world applications require

sequential detection of change-points within streaming signals. Healthcare, communication, and

finance are just a few areas where sequential change detection is widely used [16–18]. An extended

discussion of applications of change-point detection can be found in [7].

Despite being devised more than half a century ago, the CUSUM statistic is still one of the

most popular methods for detecting change-points [10]. This is chiefly due to two reasons. First, it

has a simple recursive implementation which makes it computationally efficient to apply. Second,

it has been shown to be optimal in minimizing the detection delay for a given false alarm rate [19].

However, computing the CUSUM statistic requires complete knowledge of both the pre-change

and post-change distributions. This is not feasible in many real-world scenarios where the post-

change distribution can be unknown. In such settings, a more common approach is to use the GLR

statistic, which involves estimating the post-change distribution for all possible change-points [20].

Both the CUSUM and GLR statistics leverage the log-likelihood ratio for the known/estimated pre-

and post-change distributions.

Work proposed in this chapter was published in [1]. This work was motivated by our parallel work that involved
developing an activity tracker for wheelchair users [2].
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Most work on change-point detection has focused on identifying a single change-point in the

quickest possible manner. Though this has been useful for some applications, especially those that

monitor a process for abnormal behavior such as machine fault detection and network intrusion de-

tection, many modern applications require the detection of multiple change-points sequentially in

streaming data. In sequential change-point detection, the detection procedure must be restarted and

continued after each change-point is detected, resulting in multiple change-points being detected.

Examples of such settings include segmentation of signals for activity recognition where change-

points are used to identify transitions from one activity to another in a streaming setting [21]. In

such settings, the pre-change and post-change distributions themselves change after each change-

point and cannot be assumed to be known a priori. This presents a significant challenge to most

standard change detection approaches because the detection threshold must be set without any

knowledge of these distributions (with the threshold typically being fixed in advance and held

constant throughout the procedure).

The machine learning community has been addressing this problem of identifying multiple

change-points in data streams [12]. Such works show that procedures employed to detect change-

points should be symmetric. This means the magnitude of a change from a distribution θ0 to a

distribution θ1 should be the same for a change from θ1 to θ0. Using a procedure that has a similar

power in detecting such changes makes it easy to select a threshold for detecting multiple changes

sequentially. Statistics such as the GLR and CUSUM are not symmetric when distribution changes

involve a change in variance. This makes it difficult to use these in detecting multiple changes.

In this chapter, we present an adaptive symmetric version of CUSUM that we call Data-

Adaptive Symmetric CUSUM (DAS-CUSUM). DAS-CUSUM uses a window to estimate the

post-change distribution and employs a symmetric change statistic to make it easier to select a

fixed threshold to detect multiple change-points in streaming data. We provide theoretical results

for our proposed method that relate the expected detection delay (EDD) (average delay in detecting

true changes) to the average run length (ARL) (average time until a false alarm occurs).
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The rest of this chapter is organized as follows. After reviewing related literature in Section 2.2,

we formalize the change detection problem in Section 2.3 and further motivate the need to have

a symmetric change statistic for detecting multiple changes. Section 2.4 provides a description

of the proposed procedure. Theoretical results that relate EDD versus ARL are described in Sec-

tion 2.5, where a sketch of the related proofs is also given. Section 2.6 contains simulations that

empirically validate the theoretical results in a practical setting. Experiments on real-world data

are summarized in Section 2.7.

2.2 Related work

The CUSUM statistic is known for being asymptotically optimal in minimizing the maximum

average detection delay as the average time to false alarm reaches infinity [19]. CUSUM was later

shown to be optimal in minimizing the expected detection delay for a provided (non-asymptotic)

expected time to false alarm [22]. There has been extensive work done to further investigate and

generalize the optimality property of CUSUM. These results, however hold when both pre-change

and post-change distribution are completely known. A summary of such work can be found in [23].

A two-sided CUSUM test can be used to detect either an increase or decrease in mean [24], but this

approach still assumes a fixed and known variance. When the post-change distribution is unknown,

the generalized log-likelihood ratio test (GLR) can be used by estimating both the change location

and the post-change distribution through maximum likelihood estimation. However, CUSUM,

GLR, and their variants are often used to detect only a single change-point [8]. The few works that

do use these methods to detect multiple changes do so by only detecting changes in the mean of

normally distributed data [25, 26]. It is more challenging to detect multiple changes when both the

mean and the variance of a signal change. There is limited prior work that detects joint changes

in both the mean and the variance of the signal [27], however, this has not been considered in the

context of detecting multiple changes.

Recently, there has been increasing interest in the machine learning community to detect mul-
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tiple change-points sequentially within streaming data [12, 28–30]. Most of these methods use

non-parametric change statistics, which are symmetrical. This means that the magnitude of the

change statistic for a change from θ0 to θ1 is equivalent in magnitude for a change from θ1 to θ0.

The need for this symmetrical statistic was noted by [12], who use a symmetric KL-divergence to

detect multiple changes within streaming data where both the mean and variance of the normally

distributed signal are changing. The symmetric statistic makes it easy to set a single detection

threshold before the procedure is started to detect multiple changes within streaming data. At each

time instance, a pre-change distribution is estimated using a “past window,” and the post-change

distribution is estimated using a “future window.” These methods, however, do not incorporate

data samples directly. These samples are incorporated through estimates of the distribution, which

makes these methods slow to react to changes. None of these methods characterize the relationship

between detection delay and false alarm rate.

The need to use symmetric statistics for change detection was also earlier noticed in [31–33],

where the authors noted the asymmetry in change statistics when there are changes in both mean

and variance. These works used a log-likelihood ratio with a drift term to make the expected

value of the change statistic symmetric under the post-change distribution. However, this drift

term meant that the expected value of the statistic is zero under the pre-change distribution, which

can lead to more false positives. A slightly modified version of this technique was mentioned in

[34], where false alarm rates were reduced by adding a fixed drift term which made the expected

value of the statistic negative under the pre-change distribution. However, no details were provided

about setting this drift term. These methods also provided no characterization of the relationship

between detection delay and false alarm rate.

In this work, we investigate a suitable choice for this fixed drift to make the statistic symmet-

ric under the post-change distribution while also ensuring the expectation is negative under the

pre-change distribution. Our proposed change detection procedure provides a symmetric change

statistic for different families of probability distributions, however, the theoretical results relating
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detection delay and false alarm rate consider the more restricted setting of i.i.d. univariate normally

distributed data.

2.3 Problem statement

Change-points are instances in a signal where the underlying distribution of data changes, e.g.,

the parameters of the signal-generating distribution change from θ0 to θ1. Most change-point

detection methods rely on hypothesis tests based on the log-likelihood ratio. Specifically, suppose

we are given a sequence of observations x0, . . . , xt. We will assume that each element xi is drawn

independently from a distribution fθ where θ represents some (possibly changing) parameters. To

detect a change we compare the null hypothesis (H0) that all xi are drawn according to fθ0 for

some (known) θ0 to the alternate hypothesis (H1) that the time series distribution changes from fθ0

to fθ1 , at time nc, for some θ1 ‰ θ0.

The likelihood of X under these two hypotheses is given by
śt

i“1 fθ0pxiq (under H0) and
śnc´1

i“1 fθ0pxiq
śt

i“nc
fθ1pxiq (under H1), respectively. By computing the likelihood ratio and tak-

ing the logarithm, we obtain the likelihood-ratio statistic at instance t for a possible change-point

at nc:

ℓtnc
“

t
ÿ

i“nc

log
fθ1pxiq

fθ0pxiq
.

Since the location of the change-point nc is unknown, the maximum over all possible change-point

locations are taken to compute the change statistic at instance t:

ℓt “ max
1ďncăt

ℓtnc
. (2.1)

In ( 2.1), we are maximizing over nc to find the maximum log-likelihood ratio. Instead of

maximizing ( 2.1) with respect to nc, we can also maximize the log-likelihood ratio by minimizing,

over nc, the expression:
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ℓt “

t
ÿ

i“1

log
fθ1pxiq

fθ0pxiq
´ min

1ďncăt

nc
ÿ

i“1

log
fθ1pxiq

fθ0pxiq
. (2.2)

The CUSUM statistic [10] provides a computationally attractive recursive implementation of

the test in ( 2.2). It assumes both pre-change parameters θ0 and post-change θ1 distribution param-

eters are known. In such a setting, a recursive implementation of ( 2.2) can be obtained as shown

below in ( 2.3):

St “ S`
t´1 ` log

fθ1pxtq

fθ0pxtq
, (2.3)

where pxq` “ maxp0, xq and S0 “ 0. The detection procedure is a stopping time T ; a change-point

is detected at the first time when the detection statistic St exceeds a pre-set threshold b:

T “ inftt ą 0 : St ą bu. (2.4)

The post-change distribution is often unknown in real-world settings. In such cases, the GLR

[20] can be used to obtain the change statistic ℓt. GLR maximizes the change statistic in ( 2.5) over

both the post-change distribution, θt at instance t, and the change instance nc. Let

ℓtnc
:“ max

θ

t
ÿ

i“nc

log
fθpxiq

fθ0pxiq
.

And the GLR detection statistic is defined as

ℓt “ max
1ďncăt

ℓnc
t . (2.5)

Once the change statistic, ℓt, crosses the threshold b, a change is detected at a similarly defined stop-

ping time T as in ( 2.4), and the estimated change-point location n˚
c corresponds to the maximizing

parameter at T . The corresponding post-change estimate θ̂n
˚
c
T is used as the new pre-change esti-
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(a) N p1, 1q Ñ N p10, 3q (b) N p10, 3q Ñ N p1, 1q

Figure 2.1: Joint changes in mean and variance lead to asymmetric Likelihood Ratios. In Fig-
ure 2.1a, the pre-change likelihood is in the tail, leading to a large likelihood ratio. In Figure 2.1b,
the post-change likelihood is higher than it is in Figure 2.1a, leading to a relatively smaller likeli-
hood ratio

mate θ0 and the sequential change-point detection procedure is repeated to detect the next change.

This way multiple change-points are detected. It is important to note that the GLR procedure is

non-recursive and can be computationally expensive to run.

2.3.1 Asymmetry of log-likelihood ratio

The log-likelihood ratio statistic, employed by GLR and CUSUM, is quick to react to changes

but is asymmetric for detecting joint changes in mean and variance. Figure 2.1 illustrates this

asymmetry. This difference becomes more pronounced when one of the two distributions has a

much smaller variance.

Figure 2.2 shows a real-world example where this asymmetry makes it difficult for GLR to

detect multiple change-points. The log-likelihood ratio for the first change-point is much larger

than that for the second change-point. This makes it difficult to set a detection threshold a priori

to detect multiple change-points in a streaming data setting. In the first sub-figure, the fixed de-

tection threshold misses the second change-point, which has a much smaller statistic. As seen in

the second sub-figure, a blackuction in the detection threshold leads to many false change-point

detections.
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Figure 2.2: Joint changes in mean and variance lead to asymmetric likelihood ratio. In Figure 2.2a,
the likelihood ratio (in GLR) for the second change is much smaller than the likelihood for the first
change. This can lead to a missed change-point when the detection threshold is set to be large.
When the detection threshold is loweblack to detect this missed change-point, many false change-
points are detected, as shown in Figure 2.2b.
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Figure 2.3: Adaptive version of CUSUM. Using a “future” window to estimate post-change pa-
rameters θ̂t could be used in place of post-change distribution θ1 for CUSUM update.

2.4 Data-adaptive symmetric DAS-CUSUM

2.4.1 Adaptive post-change estimation

When the post-change distribution is unknown, another way to estimate the post-change distribu-

tion is to use a window of size w to perform a sequential estimate of the post-change parameters

θ̂t at time t for the CUSUM statistic St, called the window-limited CUSUM in [11] and used in

[35] where a window is used to estimate post-change distribution change distribution for subspace

change detection. Figure 2.3 illustrates the procedure. For normally distributed i.i.d. data, the

post-change distribution estimate θ̂t “ pµ̂t, σ̂
2
t q at time t can be calculated conveniently as

µ̂t “

t`w
ÿ

i“t`1

xi, σ̂2
t “

t`w
ÿ

i“t`1

1

w
pxi ´ µ̂tq

2.

Using “future” samples to calculate post-change estimates θ̂t may initially seem unreasonable.

Still, detection decisions can be delayed by w samples so that data is available for calculating these

estimates (provided that w is not excessively large). These estimates can be substituted for θ1
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in ( 2.3) to obtain an adaptive form of CUSUM where the post-change distribution is estimated.

Such estimates are also independent of the change statistic St. In comparison to GLR, adaptive

CUSUM leads to a more computationally efficient method for detecting change points when the

post-change distribution is unknown. CUSUM has been extensively studied to develop tools that

characterize the detection average run length (ARL), the average time till false detection under

the pre-change distribution, and the expected detection delay (EDD), which is the expected time

till true detection under the post-change distribution. Adaptive CUSUM can utilize the similar

technique to characterize the ARL and EDD performance.

2.4.2 Proposed procedure

As discussed in Section Subsection 2.3.1, the log-likelihood ratio test is asymmetric for changes

between two distributions having different variances. This makes it difficult to select a single

threshold for adaptive CUSUM to detect multiple changes.

To address this problem, we introduce a symmetric version of adaptive CUSUM called DAS-

CUSUM. To begin, we recall that the Kullback-Leibler (KL) Divergence between the distribution

fθ0 and fθ1 is given by:

DKLpθ0, θ1q “

ż

fθ0pxq log
fθ0pxq

fθ1pxq
dx.

The DAS-CUSUM-based change detection statistic is defined as:

St “ pSt´1q
`

` st,

with the incremental update statistic is given by:

st “ log
fθ̂tpxiq

fθ0pxiq
` DKLpθ0, θ̂tq ´ v, (2.6)
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where v ą 0 is a constant in the drift term.

Comparing to the incremental update for CUSUM, which only contains the log-likelihood ratio,

the DAS-CUSUM update statistic has two additional terms, which can be seen in ( 2.6). The first

of these terms is a KL divergence, which makes the incremental statistic almost symmetric under

the post-change distribution.

When w is sufficiently large, θ̂t « θ1, and thus

Eθ1rsts « DKLpθ1, θ0q ` DKLpθ0, θ1q ´ v. (2.7)

The second of these additional terms, v, is a drift term that makes the expectation of the incre-

mental statistic negative under the pre-change distribution. This allows our proposed statistic to

match the property of CUSUM, which requires that the increment term should be negative under

the pre-change distribution to avoid false alarms.

We want to point out that by a symmetrical change statistic, we mean that the change statistic

value when moving from θ0 to θ1 is similar to the change statistic value when moving from θ1 to

θ0. Though this symmetrical statistic assumes the sequence switches between two distributions, the

change statistic values, as compared to CUSUM or GLR, are relatively similar when a sequence

switches between multiple distributions having different variances. This makes it easier for our

proposed method to use a single threshold to detect multiple distributional changes in a sequence.

2.4.3 Practical implementation

1 shows how to implement DAS-CUSUM for detecting multiple change-points. This algorithm

uses values for the window size w˚ and drift term v˚, based on theoretical results presented in

Section 2.5. However, these results require complete knowledge of the post-change distribution θ1

to compute the KL divergences, necessary to compute the desiblack values for w˚ and v˚. Since

this post-change distribution is unknown, we can set a minimum symmetric KL divergence, which
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corresponds to the minimum change in distribution that is to be detected in a streaming data setting.

This minimum symmetric KL divergence can be used to set window size values w˚ and drift term

v˚. The optimal window size w˚ can be found by minimizing an expression. This expression is

discussed in more detail in Remark 2. Despite this expression being convex with respect to w, a

closed-form expression of w˚ is difficult to obtain. This optimal window size w˚ can be solved

numerically. When a change-point is detected, the previous post-change estimate θ̂t is used as

the pre-change distribution θ0 for detecting the subsequent change-point. The initial pre-change

distribution θ0 used at the start of the change detection procedure can either be determined through

prior knowledge or estimated through samples at the beginning of sequence.
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Algorithm 1 DAS-CUSUM for multiple change-point detection

Inputs: Sequence: X , Threshold b, Target ARL: γ, Min sym div: s1,

Pre-change distribution: θ0 :“ pµ0, σ
2
0q

Output CpList : List containing change-points

Choose window size

w˚
“ arg min

w

log γ

´1 ` p1 ` ws12q
1
2 ` log

˜

1 ´

´

´1`p1`ws12q
1
2

¯2

ws12

¸ ` w

δ˚
0 “ ´

1

s1
`

ˆ

1

s12
` w˚

˙1{2

, v˚
“

´ logp1 ´
δ˚
0
2

w
q

δ˚
0

for t “ 1 to lengthpXqs do

µ̂t “
řt`w
i“t`1 xi, σ̂2

t “
řt`w
i“t`1

1
w

pxi ´ µ̂tq
2, θ̂t “ pµ̂t, σ̂

2
t q

Compute CUSUM recursion

St “ pSt´1q
`

` log
fθ̂tpxiq

fθ0pxiq
` DKLpθ0, θ1q ´ v˚

if St ą b then

Add t to CpList

µ0 :“ µ̂t, σ2
0 :“ σ̂2

t

end if

end for
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2.5 Theoretical results: EDD versus ARL

With the definition of the stopping time T , the detection procedure takes τ samples to detect a

change. The average run length (ARL) is the expected value of τ under the pre-change distribution

θ0 such that a false change is detected: E8rT s, where E8 is the expectation under the probability

measure on observations without a change. A commonly considered metric is the worst expected

detection delay (EDD) [19] conditioned on the worst possible realizations:

Ē1rT s “ sup
kě1

ess supEkprT ´ k ` 1s
`

|X1, ...., Xk´1q, (2.8)

where k denotes the change-point location and Ek is the expectation under the probability measure

of observations when the change occurs at k.

Using a similar argument as showing Lemma 4 in [11], we can show that E1rT s (when the

change happens at the first time instance) provides an upper bound to the worst case expected

detection delay ( 2.8). Thus, in our analysis, we focus on E1rT s which we call the EDD. Our first

result relates DAS-CUSUM’s ARL with its EDD, using similar techniques as those in [11, 36]

Theorem 1. Let fθ0pxq and fθ1pxq be the normal density functions of x under the pre-change

distribution θ0 and post-change distribution θ1, which is unknown and estimated using a window

of size w. Assume the ARL ě γ. When γ Ñ 8 and for large window size w, the EDD of DAS-

CUSUM is given by:

E1rT s “
log γ ` op1q

δ0 pDKLpθ1, θ0q ` DKLpθ0, θ1qq ` logp1 ´ δ0
2

w
q

` w. (2.9)

where δ0 ą 0.
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Corollary 1. The value of δ0 that minimizes the EDD for a given ARL in ( 2.9) is given by:

ˆ

1

pDKLpθ0, θ1q ` DKLpθ1, θ0qq
2 ` w

˙1{2

´
1

pDKLpθ0, θ1q ` DKLpθ1, θ0q
. (2.10)

Remark 1. The value of δ˚
0 from Corollary 1 can be used in the result of Theorem Theorem 1 to

obtain the minimum EDD for a given ARL.

Corollary 2. The optimal drift term v˚ which minimizes the EDD in ( 2.9) for a given ARL is given

by

´ logp1 ´ δ˚
0
2
{wq{δ˚

0 . (2.11)

Remark 2. The expression in Theorem Theorem 1 can be minimized with respect to w (at a pro-

vided value of average run length and symmetric KL divergence) to find the optimal window size

w˚. A closed-form expression for w˚ cannot be obtained, but w˚ can be solved numerically. Fig-

ure 2.4 shows how EDD relates to window size w. The curve has a minimum point corresponding

to a window size of w “ 11. When this solution is too small, the results in Theorem Theorem 1 do

not hold, which assume w to be large (so that post-change estimates converge to true post-change

distribution). More details can be found in Subsection 2.6.2. Additionally, the window size should

be large enough for δ˚
0 ă w for the logarithmic term in Theorem Theorem 1 to be real.

2.5.1 Comparison to CUSUM results

[19] provides the asymptotic lower bound for EDD for CUSUM given E8 ě γ and γ Ñ 8,

E1rT s ě
log γp1 ` op1qq

DKLpθ1, θ0q
. (2.12)

For the proposed detection procedure, it can be seen in Theorem Theorem 1 that the EDD at

a set ARL value would be similar for a change from θ0 to θ1 and a change from θ1 to θ0. This is
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Figure 2.4: Expected detection delay (EDD) versus window size for a change with symmetric KL
divergence of 0.5 at an ARL value of 5,000. This shows that the EDD is a convex function of w
which can be minimized to obtain the optimal window w˚.

not true for CUSUM, where the detection delay for a change from θ0 to θ1 will not be equal to a

change from θ1 to θ0.

The expression in Theorem 1 also has an additional w term, which takes into account the time

delay for obtaining the window to estimate post-change parameters, but this is a consequence of

the post-change distribution being unknown.

2.5.2 Sketch of the proof

The increment of the CUSUM statistic in ( 2.3) consists of a log-likelihood ratio which has a

negative expectation under the pre-change distribution θ0. The proposed increment statistic for

DAS-CUSUM in ( 2.6) has a negative drift under the post-change distribution but is not a log-

likelihood ratio. One way to find the optimal value v in our proposed update statistic is to convert

it into a valid log-likelihood ratio. Once this is done, ARL and EDD results from CUSUM can be

used for our proposed statistic. This expression would consist of the negative drift term v, which

could be minimized to find the optimal value for v. It can been seen in [19] that for a detection
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threshold b , the CUSUM procedure has the following asymptotic average run length:

E8rT s “
ebp1 ` op1qq

K
, (2.13)

where K is a constant.

For CUSUM, the EDD matches the lower bound as shown in ( 2.12).

Using the techniques developed in proposed in [11, 35], an equivalence term δ0 can be intro-

duced to our incremental statistic, which satisfies the equation

Eθ0rexppδ0stqs “ 1. (2.14)

When ( 2.14) is satisfied, exppδ0stq can be consideblack to be the likelihood ratio between

distributions f̃θ1 “ exprδ0stsfθ0 and fθ0 which then allows us to use ( 2.13) to obtain the ARL

performance for DAS-CUSUM. The threshold b can be expressed in terms of the average run

length (γ)

b “
log γp1 ` op1qq

δ0
. (2.15)

This expression is obtained through ( 2.13) where the constant K is absorbed within op1q and

the introduced scaling factor δ0 for the incremental statistic is appropriately scaled. Similarly, δ1

can be introduced such that δ1st is the log-likelihood ratio between fθ1 and f̃θ0 “ expr´δ1stsfθ1 .

Thus, we can relate change between fθ1 , where the δ1 term is observed in op1q as shown below:

E1rT s “
bp1 ` op1qq

Eθ1 rsts
. (2.16)

Substituting ( 2.15) in the above equation, we obtain

E1rT s “
log γp1 ` op1qq

δ0Eθ1 rsts
. (2.17)
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Substituting ( 2.7) yields

E1rT s “
log γp1 ` op1qq

δ0 pDKLpθ0, θ1q ` DKLpθ1, θ0q ´ vq
. (2.18)

Our expression above assumes that our statistic is converted to a log-likelihood ratio by satisfy-

ing the martingale property in ( 2.14). Lemma 1 satisfies this requirement by finding an expression

that relates the drift value v with the equivalence factor δ0

Lemma 1. As w ÝÑ 8,Eθ0rexppδ0stqs “ 1 asymptotically when v takes the value in ( 2.11).

Then the value for v, for which ( 2.14) is satisfied, can be substituted. As w samples are needed

to estimate the post-change distribution θ̂t, when w Ñ 8, the EDD approaches to

log γ ` op1q

δ0 pDKLpθ0, θ1q ` DKLpθ1, θ0qq ` logp1 ´ δ02

w
q

` w. (2.19)

This EDD expression can be minimized with respect to δ0 by equating the derivative to 0. The

optimal value of δ˚
0 that minimizes the expression is given by ( 2.10).

Sketch of Proof for Lemma 1

The left side of ( 2.14) can be written as shown below by substituting the proposed update statistic

from ( 2.6):

Eθ0 rexppδ0s̃tqs “ Eθ0
„

exp

ˆ

δ0

ˆ

´
pxt ´ µ̂tq

2

2σ̂2
t

`
pxt ´ µ0q

2

2σ2
0

`
σ2
0 ` pµ0 ´ µ̂tq

2

2σ̂2
t

´
1

2
´ v

˙˙ȷ

.

Since a future window (xt`1, . . . , xt`w) is used to estimate µ̂t and σ̂t, these estimates are inde-

pendent from xt. These estimates can be treated as constants while introducing a conditional

expectation through the tower rule. The equation above can be written as
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Ext`1,...,xt`w„fθ0

„

exp

ˆ

δ0

ˆ

σ2
0 ` pµ0 ´ µ̂tq

2

2σ̂2
t

´
1

2
´ v

˙˙

Ext`1,...,xt`w„fθ0

”

rpxtq
ˇ

ˇ

ˇ
µ̂t, σ̂t

ı

ȷ

“ exppδ0p´
1

2
´ vqqExt`1,..,t`w„θ0

„

exp

ˆ

δ0

ˆ

σ2
0 ` pµ0 ´ µ̂q2

2σ̂2
t

˙˙

Ext„θ0

”

r pxtq
ˇ

ˇ

ˇ
µ̂t, σ̂t

ı

ȷ

,

(2.20)

where

r pxtq “ exp

ˆ

δ0

ˆ

´
pxt ´ µ̂tq

2

2σ̂2
t

`
pxt ´ µ0q

2

2σ2
0

˙˙

.

Further details for these calculations can be found in the Appendix.

2.6 Simulations

2.6.1 ARL and EDD

As discussed in Section 2.4, the DAS-CUSUM change-point detection procedure is designed to

have a symmetric change statistic. Due to this symmetric property, DAS-CUSUM should have

similar ARL versus EDD performance for changes from the distribution θ0 to θ1 and from θ1 to

θ0. This symmetry is studied in ARL versus EDD plots in Figure 2.5. This figure also contains

plots for CUSUM and an adaptive version of CUSUM where a future window of size w is used

to estimate the post-change parameters. CUSUM curves for changes from θ0pµ0 “ 1, σ2
0 “ 1q to

θ1pµ1 “ 2, σ2
1 “ 2q and θ1 to θ0 are far away from one another, while DAS-CUSUM curves are

closer to each other. These DAS-CUSUM curves become closer when the post-change estimates

become more accurate with increasing window size, as shown in Figure 2.5b. These results align

with Subsection 2.5.1, which compares the results of DAS-CUSUM in Theorem Theorem 1 with

corresponding results for CUSUM. Specifically, EDD at a given ARL is the same for a change

from θ0 to θ1 and vice versa when the window length w becomes asymptotically large.

Now we validate the accuracy of theoretical approximation by comparing it against simulation
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Figure 2.5: EDD versus ARL performance comparison for DAS-CUSUM and CUSUM for
changes between θ0pµ0 “ 1, σ2

0 “ 1q and θ1pµ1 “ 2, σ2
1 “ 2q which corresponds to a sym-

metric KL divergence of 1. Figure 2.5a shows the relationship when a window size of 10 is used
for the post-change estimate. while Figure 2.5b shows the case when the window size is 40. Notice
the similar performance for DAS-CUSUM for changes from θ0 to θ1 and θ1 to θ0. This similarity
increases with window size w.

results. Figure 2.6 shows DAS-CUSUM plots for EDD versus ARL at different window lengths (w

to estimate post-change distribution). For each window length, plots for the theoretical relationship

(from Theorem Theorem 1) are compablack to simulated plots. For a small window size (w “ 10),

the theoretical and simulated results grow apart as ARL increases. The difference between the

theoretical and simulated plots decreases as the window size increases. This is expected as the

results in Theorem Theorem 1 hold when w grows asymptotically. When w “ 120, the difference

between theoretical and simulated EDD is approximately 1 sample for the shown ARL range.

2.6.2 Optimal window length

DAS-CUSUM results that relate EDD with ARL in Theorem Theorem 1 depend on the estimation

window size w (at provided values of ARL and symmetric KL divergence). This equation can be

minimized for w to find the optimal window length (w˚). Unfortunately, there is no closed-form
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Figure 2.6: Comparison between theoretical and simulated DAS-CUSUM results for different post-
change estimation window sizes w. The change in this example has a symmetric KL divergence of
1.

expression for this optimal value. Nevertheless, this equation can be minimized numerically to

obtain w˚. Figure 2.7 shows this relationship at an ARL of 5,000 for changes with two different

symmetric KL divergence values.

Figure 2.7 shows this relationship for a smaller change in distribution (a symmetric diverge of

0.11), while Figure 2.7b shows this relationship for a larger change (a symmetric KL divergence of

2). Intuitively, a larger change (with a larger symmetric KL divergence) would be easier to detect,

requiring a shorter window length as compared to a smaller change (with a smaller symmetric KL

divergence). However, for larger changes, the window size corresponding to the minimum EDD

value could be too small, as seen in Figure 2.7b where this window is of size 4. The theoretical

results start to match simulated results at a window size of about 30 while results at a window size

of 10 divergences. For this reason, when the optimal window size (w˚q is below 20, a rule should

be in place for a minimum window size.
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Figure 2.7: Relation between EDD and window size for changes with different symmetric KL
divergence. The ARL has been set to 5,000 in both figures. The optimal window size corresponds
to the minimum EDD values. Figure 2.7a shows the relationship for a change with symmetric KL
divergence of 1 while Figure 2.7b shows the relationship for a symmetric KL divergence of 2

.

Results that relate the optimal window length for different ARL values can be seen in Fig-

ure 2.7. The changes in this figure have small divergence values, which lead to w˚ that is greater

than a size of 20. The curves for w˚ are in yellow and seem to provide better EDD versus ARL per-

formance than most other window sizes. As the optimal window size, w˚ increases in Figure 2.8b,

the corresponding ARL versus EDD curve often performs best (or close to best) when compared

with other window sizes.
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Figure 2.8: ARL versus EDD performance for different window length (w) sizes. Figure 2.8a
shows plots for a change from θ0pµ0 “ 1, σ2

0 “ 1q to θ1pµ1 “ 1.3, σ2
1 “ 1.3q and Figure 2.8b

shows plots for changes from θ0pµ0 “ 1, σ2
0 “ 1q to θ1pµ1 “ 1.2, σ2

1 “ 1.2q. Optimal window size
(w˚) provides optimal performance as w˚ increases.

2.6.3 Setting the detection threshold

The table below compares the simulated and theoretical detection threshold (b) to achieve different

ARL values. The theoretical relationship between ARL and the detection threshold is provided

in ( 2.15). These experiments were done on a distribution change from θ0pµ0 “ 1, σ2
0 “ 1q to

θ1pµ1 “ 2, σ2
1 “ 2q which corresponds to a symmetric KL divergence of 1. For ARL, false alarms

occur when data points generated from pre-change distribution (θ0) are falsely detected as change-

points. Intuitively ARL values should depend only on the pre-change θ0 but the post-change dis-

tribution (θ1) is used to set the δ˚
0 value, which is used within the theoretical ( 2.15) as well as

for setting the drift term v for the simulations. The difference between theoretical and simulated

results is large for small values of post-change estimate window w, but these results become closer

as this window size increases. This is expected as the relationship between the detection threshold,

and average run length is obtained using ( 2.14), which is satisfied asymptotically.
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Figure 2.9: Plots for results in table Table 2.1. Figure 2.9a shows the relationship for an ARL
value of 5,000 while Figure 2.9b shows the relationship for an ARL of 10,000. The gap between
simulation and theoretical results gets small at a window value of about 30.

Table 2.1: Comparison between theoretical and simulated detection thresholds for a change with
symmetric KL -divergence of 1

w “ 10 w “ 20 w “ 30 w “ 40 w “ 50 w “ 100 w “ 150

ARL = 5,000 Thr. 3.68 2.38 1.86 1.57 1.37 0.94 0.75

Sim. 14.77 6.10 3.16 2.13 1.69 1.01 0.77

ARL = 10,000 Thr. 3.98 2.57 2.02 1.70 1.50 1.02 0.82

Sim. 18.16 7.91 4.13 2.70 2.11 1.26 0.96

2.6.4 Moving between multiple distributions

In our previous section, as demonstrated in ( 2.6), we showed that the DAS-CUSUM method

exhibits symmetry when transitioning between distributions θ0 and θ1. This desirable property

allows for the implementation of a single threshold when detecting multiple change-points, even
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Figure 2.10: ARL vs. EDD relationship when moving between θ0 : pµ0 “ 0.5, σ2
0 “ 2q to

θ1 : pµ1 “ 3, σ2
1 “ 3q and from θ1 : pµ1 “ 3, σ2

1 “ 3q to θ2 : pµ2 “ 1.5, σ2
2 “ 1.5q. For both

figures, which show different window sizes used, curves for DAS-CUSUM are closer, indicating
it is easier to set a threshold to detect changes from θ0 to θ1 and from θ1 to θ2 with closer EDD vs.
ARL performance.

when the data sequence involves more than two distinct distributions.

Consider a sequence that alternates among three distributions: θ0 “ pµ0 “ 0.5, σ2
0 “ 0.5q, θ1 “

pµ1 “ 3, σ2
1 “ 3q, θ2 “ pµ2 “ 1.5, σ2

2 “ 1.5q. In this case, the change statistics for transi-

tions between θ0 and θ1, as well as between θ1 and θ2, would differ. However, the DAS-CUSUM

method generates more similar change statistics for these varying distributional transitions when

compablack to the CUSUM and adaptive CUSUM approaches.

This similarity in change statistics for diverse distributional transitions facilitates the selection

of a single threshold capable of detecting true change-points across multiple types of distributional

shifts while minimizing the identification of false changes. Figure 2.10 illustrates the EDD versus

ARL curves for changes from θ0 to θ1 and from θ1 to θ2. The proximity of these curves for

the DAS-CUSUM method (represented by light blue and yellow) is noticeably greater than that

observed for the other methods.

To further illustrate this example, consider the case when this sequence persists in θ0 for 1000

samples and then switches from θ0 to θ1. This sequence then persists in θ1 for 1000 samples, after

which it changes from θ1 to θ2. When this sequence changes from θ0 to θ1, the change statistics
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Figure 2.11: The change statistic St for DAS-CUSUM, CUSUM, and adaptive CUSUM is pre-
sented under the assumption of no distributional shifts. The left figure displays a pre-change distri-
bution with µ0 “ 0.5 and σ2

0 “ 0.5, while the right figure illustrates a pre-change distribution with
µ0 “ 3 and σ2

0 “ 3. A window size of 20 is employed for estimating the post-change distribution
in both DAS-CUSUM and adaptive CUSUM methods.
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Figure 2.12: The change statistic St for DAS-CUSUM, CUSUM, and adaptive CUSUM is pre-
sented under different distributional shifts. The left figure displays the change statistic under the
post-change distribution of θ1 “ pµ1 “ 3, σ2

1 “ 3q, transitioning from a pre-change distribution of
θ0 “ pµ0 “ 0.5, σ2

0 “ 0.5q. In contrast, the right figure illustrates the change statistic under the
post-change distribution of θ2 “ pµ2 “ 1.5, σ2

2 “ 1.5q, originating from a pre-change distribution
of θ1 “ pµ1 “ 3, σ2

1 “ 3q. Both DAS-CUSUM and adaptive CUSUM methods employ a window
size of 20 for estimating the post-change distribution.
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after 10 samples can be seen in Figure 2.12a. Figure 2.11b shows the change statistics when the

sequence persists in θ1 for 1000 samples, while Figure 2.12b shows the change statistics after 10

samples of distribution changing from θ1 to θ2. The change statistic for CUSUM and adpative

CUSUM under no change in Figure 2.11b goes up to 6.01 and 4.3, respectively. These are smaller

than their respective change statistics after 10 samples in Figure 2.12b. This means that CUSUM

and adaptive CUSUM can’t set a threshold that can correctly detect a change within 10 samples of

the sequence switching from θ1 to θ2 without detecting a false change when the sequence is in θ1.

This is not a problem for DAS-CUSUM. Note that the change statistics when the sequence persists

in θ0 for 1000 samples in Figure 2.11a is very similar to change statistics when the sequence

persists in θ1. Thus, all CUSUM, adaptive CUSUM, and DAS-CUSUM can correctly detect a

change when moving from θ0 to θ1 without detecting a false change when this sequence persists

in θ0. However, only DAS-CUSUM, with a threshold value greater than 5 (but lower than 20), can

detect changes from θ0 to θ1 and θ1 to θ2 without detecting any false changes when the sequence

persists in θ0 and θ1.

2.7 Real data

Real-world sequences often involve signals that switch between multiple distributions. These dis-

tributions may also persist for relatively short intervals. DAS-CUSUM’s symmetric statistic is

more useful for detecting multiple changes as compablack to GLR and adaptive CUSUM. This

is favorable for detecting multiple changes in real-world problems, as seen in Figure 2.14 which

shows readings from a pressure mat that can be seen in Figure 2.13. The mat is inserted beneath a

wheelchair cushion and is used to characterize in-seat movement for wheelchair users. When the

wheelchair is occupied, the sensor signal has a high mean and variance, whereas when the chair

is unoccupied, the signal has a low mean and variance. Detecting changes in occupancy can be

treated as a change detection problem. As discussed previously, the asymmetric log-likelihood

ratio makes it difficult for both GLR and adaptive CUSUM to detect these changes.
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Figure 2.13: Sensor mat used for characterizing in-seat behavior for wheelchair users. Sequential
change-point detection can be used to identify changes in wheelchair occupancy.

For both Figure 2.2a and Figure 2.2b, the statistic for getting into the chair (low variance to

high variance) is not equal to the statistic for getting out of the chair. For this reason, it is diffi-

cult to select a threshold that detects both changes. It can be seen that there is a larger delay in

detecting the change while still detecting a false positive change-point. Because of the asymmetric

statistics, the change for the first statistic is extremely large as compablack to the second change.

To detect both changes, a lower threshold is set, which causes the first change to be detected really

quickly (where the signal is in the middle of the transition). This causes incorrect signal esti-

mates to be used as pre-change estimates causing false change-points to be detected. Figure 2.14b

shows the performance of DAS-CUSUM on this signal. The symmetric change statistic provides

similar power for detecting both changes without detecting any false positive changes. The sym-

metric statistic makes it easy to select a threshold to detect multiple changes. This is attractive

for real-world scenarios where numerous changes need to be detected when the signal changes to

unforeseen distributions.

Figure 2.15 provides an extended example of the occupancy problem. The signal sensors de-

velop drift, and the post-change distribution can change to different unknown distributions at dif-

ferent times. This makes it difficult to use 2-sided CUSUM or other variants as the post-change

distribution is not known. In such an example, it can be seen that with symmetric statistics, DAS-
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Figure 2.14: Figure 2.14a and Figure 2.14b show how DAS-CUSUM improves over CUSUM for
detecting multiple change-points

CUSUM performs much better than GLR and adaptive CUSUM. The in-chair distribution is not

static. The mean and the variance of the signal changes within the chair, however, these changes

are much smaller than the changes in distribution when there is a change in wheelchair occupancy.

Symmetric DAS-CUSUM’s change statistic is much larger for these occupancy change events,

which makes it easy to detect these events without detecting any false alarms. For all methods, a

window size of 300 was to estimate the post-change distribution.
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Figure 2.15: Comparison of GLR, Adaptive CUSUM, and DAS-CUSUM for detecting multiple
change-points. The asymmetric log-likelihood ratio makes it difficult for CUSUM and GLR to
detect all changes correctly without any false alarms. In Figure 2.15a and Figure 2.15b, a large
detection threshold to avoid false change-points results in many missed change-points while still
detecting a few false change-points. Figure 2.15c and Figure 2.15d show how a lower threshold
results in many false change-points. The symmetric DAS-CUSUM is able to correctly detect all
true change-points without detecting any false change-points

2.8 Conclusion

In this work, we have presented DAS-CUSUM, which is a symmetric change-point detection pro-

cedure. Due to DAS-CUSUM’s symmetric incremental statistic, the EDD versus ARL relationship

is the same for changes from a distribution θ0 to θ1 and from θ1 to θ0. This symmetric change

statistic is helpful when identifying multiple changes in both the mean and variance of a signal. A

single threshold can be easily set to detect multiple change-points. This is extremely helpful for

identifying change-points in real-world settings where log-likelihood ratio-based approaches such
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as GLR and adaptive CUSUM struggle. We have derived results that characterize DAS-CUSUM’s

expected detection delay (EDD) and average run length (ARL). Extensive simulations are used to

validate these results.
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CHAPTER 3

SEMI-SUPERVISED SEQUENCE CLASSIFICATION THROUGH CHANGE-POINT

DETECTION

3.1 Introduction

As devices ranging from smart watches to smart toasters are equipped with ever more sensors,

machine learning problems involving sequential data are becoming increasingly ubiquitous. Sleep

tracking, activity recognition and characterization, and machine health monitoring are just a few

applications where machine learning can be applied to sequential data. In recent years, deep net-

works have been widely used for such tasks as these networks are able automatically learn suitable

representations, helping them achieve state-of-the-art performance [37]. However, such methods

typically require large, accurately labeled training datasets in order to obtain these results. Unfor-

tunately, especially in the context of sequential data, it is often the case that despite the availability

of huge amounts of unlabeled data, labeled data is often scarce and expensive to obtain.

In such settings, semi-supervised techniques can provide significant advantages over traditional

supervised techniques. Over the past decade, there have been great advances in semi-supervised

learning methods. Impressive classification performance – particularly in the fields of computer

vision – has been achieved by using large amounts of unlabeled data on top of limited labeled data.

However, despite these advances, there has been comparatively much less work on semi-supervised

classification of sequential data.

A key intuition that most semi-supervised learning methods share is that the data should (in

the right representation) exhibit some kind of clustering, where different classes correspond to

different clusters. In the context of sequential data, the equivalent assumption is that data segments

Work in this chapter was published in [3].
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within a sequence corresponding to different classes should map to distinct clusters. In the context

of sequential data, the challenge is that exploiting this clustering would require the sequence to be

appropriately segmented, but segment boundaries are generally unknown a priori. If the start/end

points of each segment were actually known, it would be much easier to apply traditional semi-

supervised learning methods.

In this chapter, we show that standard (unsupervised) change-point detection algorithms pro-

vide a natural and useful approach to segmenting an unlabeled sequence so that it can be more

easily exploited in a semi-supervised context. Specifically, change-point detection algorithms aim

to identify instances in a sequence where the data distribution changes (indicating an underly-

ing class change). We show that the resulting change-points can be leveraged to learn improved

representations for semi-supervised learning.

We propose a novel framework for semi-supervised sequential classification using change point

detection. We first apply unsupervised change-point detection to the unlabeled data. We assume

that segments between two change-points belong to the same distribution and should be classi-

fied similarly, whereas adjacent segments which are on opposite sides of a change-point belong

to different distributions and should be classified differently. These similar/dissimilar pairs, de-

rived from change-points, can then be combined with similar/dissimilar pairs derived from labeled

data. We use these combined similar/dissimilar constraints to train a neural network that preserves

similarity/dissimilarity. The learned representation can then be fed into a multilayer feedforward

network trained via existing semi-supervised techniques.

We show that this approach leads to improved results compared to sequential auto-encoders

in a semi-supervised setting. We show that even if the final classifier is trained using standard

supervised techniques that ignore the unlabeled data, the learned representations (which utilize

both label and unlabeled data pairs) result in competitive performance, indicating the value of

incorporating change-points to learning improved representations. The proposed method method is

completely agnostic with respect to the change-point detection procedure to be used – any detection
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procedure can be used as long as it does well in detecting changes.

Our main contribution is to show that pairwise information generated via change-points helps

neural networks achieve improved classification results in settings with limited labeled data. This,

to the best of our knowledge, is the first work to recognize the utility of change-points within the

context of semi-supervised sequence classification. The proposed method should not be consid-

ered a substitute for existing semi-supervised methods, but should be taken as a complementary

procedure that produces representations which are better suited for existing semi-supervised meth-

ods.

3.2 Related Work

The fundamental idea of semi-supervised learning is that unlabeled data contains useful infor-

mation that can be leveraged to more efficiently learn from a small subset of labeled data. For

example, in the context of classification, an intuitive justification for why this might be possible

might involve an implicit expectation that instances belonging to different classes will map to dif-

ferent clusters. More concretely, most semi-supervised approaches make assumptions on the data

such as: that instances corresponding to different classes lie on different submanifolds, that class

boundaries are smooth, or that class boundaries pass through regions of low data density [38].

Perhaps the simplest semi-supervised learning method is to use transductive methods to learn

a classifier on the unlabeled data and then assign “pseudo labels” to some or all of the unlabeled

data, which can be used together with the labeled data to retrain the classifier. Transductive SVMs

and graphical label propagation are examples of such methods [39, 40]. See [41] for a survey

of such methods. However, such self-training semi-supervised methods struggle when the initial

model trained from limited labels is poor.

A more common approach to semi-supervised learning is to employ methods that try to learn

class boundaries that are smooth or pass through areas of low data density[42]. Entropy reg-

ularization can be used to encourage class boundaries to pass through low density regions[43].

44



Consistency-based methods such as denoising autoencoders, ladder networks [44] and the π

method [45] attempt to learn smooth class boundaries by augmenting the data. Specifically, un-

labeled instances can be perturbed by adding noise, and while both the original and perturbed

instances are unlabeled, we can ask that they both be assigned the same class. This approach is

particularly effective in computer vision tasks, where rather than using only noise perturbations, we

can exploit class-preserving augmentations such as rotation, mirroring, and other transformations

[46]. By enforcing the classifier to produce the same labels for original and transformed images,

decision boundaries are encouraged to be smooth, leading to good generalization.

Unfortunately, due to a lack of natural segmentation and the difficulty of defining class-preserving

transformations, there has been comparatively little work on semi-supervised classification of se-

quences. Most prior work (e.g., [44, 47] ) use sequential autoencoders (or their variants) as

a consistency-based method to learn representations that lead to improved classification perfor-

mance. Such autoencoders have been exploited successfully in the context of semi-supervised

classification for human activity recognition [48]. However, while such consistency-based ap-

proaches do encourage smooth class boundaries, they do not necessarily promote the kind of clus-

tering behavior that we need in cases where there are extremely few labels available.

An alternative approach that more explicitly separates different classes involves learning repre-

sentations that directly incorporate pairwise similarity information about different instances. One

example of this approach is metric learning – as an early example, [49] showed that improved clas-

sification could be achieved by learning a Mahalanobis distance using pairwise constraints based

on class membership. The learned metric leads to a representation in which different classes map

to different clusters. A similar approach learns a more general non-linear metric to encourage the

formation of clusters while adhering to the provided pairwise constraints [50]. Neural networks

such as Siamese [51] and Triplet networks also learn representations from available similar/dis-

similar pairs. In [52] it was shown that such similar/dissimilar pairs (obtained from labeled data)

can be used for clustering data where each cluster belongs to a different class in the dataset.
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Figure 3.1: Using change-points to generate similar and dissimilar pairs of size s.

Our approach is similar in spirit to that of [52]. While this prior work used pairwise similarity

constraints derived from labeled images to learn clustered representations, our goal is to apply this

idea in the semi-supervised context. At the core of our approach is the observation that pairwise

similarity constraints on sequential data can be derived through unsupervised methods. Specifi-

cally, change-point detection can be used to identify points within a sequence corresponding to

distribution shifts, which can then be used to obtain pairwise similarity constraints. When the

availability of labeled data is limited, this can be a valuable source of additional information.

3.3 Proposed method

3.3.1 Change-point detection

Given a sequence X : x1, . . . , xN of N vectors xi P RD, the first step in our procedure is to detect

all change-points within X in an unsupervised way. Note that this is a different problem than

quickest change detection, where only a single change-point is to be detected in the fastest possible

manner. To detect a change at a point i in the sequence, two consecutive length-w windows (X i
p
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Figure 3.2: Neural network diagram (fθ) for learning representations.

and X i
f ) are first formed:

X i
p “ xi´1, xi´2...xi´w X i

f “ xi, xi`1...xi`w.

A change statistic, mi, is then computed via some function that quantifies the difference between

the distributions generating X i
p and X i

f . If mi is greater than a specified constant τ , a change-point

is detected at the point i.

As one example, many change-point detection procedures assume a parametric form on the

distributions generatingX i
p andX i

f . In this case, the distribution parameters (θ̂ip and θ̂if ) can be esti-

mated fromX i
p andX i

f via, e.g., maximum likelihood estimation. Given these parameter estimates,

a symmetrical KL-divergence can be used to quantify the difference between the distributions [12]:

mi “ KLpθ̂ip, θ̂
i
f q ` KLpθ̂if , θ̂

i
pq. (3.1)
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More commonly in practice, the underlying distributions generating the sequence are unknown.

In this case, non-parametric techniques can be used to estimate the difference between the distribu-

tions of X i
p and X i

f . One such approach uses the maximum mean discrepancy (MMD) as a change

statistic [53]. The MMD has been used to identify change-points in [54] and [30]. The MMD

statistic is given below, where Ki
a,´b :“ kpxi`a, xi´bq represents a kernel-based measure of the

similarity between xi`a and xi´b:

mi “ MMDpX i
f , X

i
pq

“
1

`

w
2

˘

w
ÿ

a,b“1
a‰b

pKi
a,b ` Ki

´a,´bq `
1

w2

w
ÿ

a,b“1

2Ki
a,´b.

Throughout this chapter, MMD with a radial basis function kernel is used to detect change-

points unless otherwise specified. However, we again emphasize that any change-point detection

method can be used as long as it performs well in identifying changes points.

The labeled data can be used to set the change-point detection threshold τ and the window size

w to balance between false and missed change-points. While we simply fix these parameters in

advance using labeled data, these could also be considered as tuning parameters whose values can

be set based on performance on a hold-out validation dataset.

3.3.2 Pairwise constraints via change-point detection

Equipped with the detected change-points, similar and dissimilar pairs of sub-sequences can be

obtained in an unsupervised manner as shown in Figure 3.1. The idea is to form four consecu-

tive non-overlapping sub-sequences. The first two sub-sequences pXp1, Xp2q both occur before

the change-point. Since the change-point detection algorithm did not determine that there was a

change-point in the combined segment of pXp1, Xp2q, we assume these two segments are generated

by the same distribution and should be classified similarly. Similarly, the last two sub-sequences

pXf1, Xf2q both occur after the change-point and are also taken as a similar pair. In contrast,
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the segments on opposite sides of the change-point have been identified as having different un-

derlying distributions. In order to lead to a balanced distribution of similar/dissimilar pairs, we

only use the constraints that pXf1, Xp2q and pXf2, Xp1q should be classified differently. Each of

the subsequences above is chosen to be of a fixed length s (determined by the spacing between

change-points).

3.3.3 Clustered representations via pairwise constraints

Using the approach described above, we can obtain similarity constraints from the unlabeled data.

We can also obtain such constraints from labeled data via the assumption that sub-sequences corre-

sponding to the same (different) class labels are similar (dissimilar) respectively. We can represent

these as a set PS consisting of sub-sequence pairs pX1, X2q that are similar and a set PD of dis-

similar pairs. For compactness, we use the notation P “ pX1, X2q to refer to a sub-sequence pair

belonging to PS or PD.

These sub-sequences are then fed into a 1D temporal convolutional neural network [55], as

illustrated in Figure 3.2. The neural network consists of 6 convolutional layers (or 3 temporal

blocks as defined by [55]) followed by 1 linear layer. We use a RELU activation function after

every convolutional layer. We choose this architecture because the dilated filter structure leads

to improved performance at classifying time series while being less computationally expensive

than recurrent networks such as RNNs and LSTMs, although our framework could also easily

accommodate either of these alternate network architectures.

Each instance xi, in the input sub-sequence X , is passed through the neural network where the

final linear layer transforms the output from the last convolutional layer into RC , where C is the

number of classes. A softmax function is then applied to obtain the empirical distribution fθpxiq

for each instance xi. For a length-N sequence X , we define the mean empirical distribution as:

ĞfθpXq “
1

N

N
ÿ

i“1

fθpxiq.
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We then compute the KL divergence between the mean empirical distributions for each sub-

sequence within a pair P “ pX1, X2q. Our loss function is constructed applying a hinge loss

(with margin parameter ρ) to this KL divergence:

hθpP q “

$

’

’

&

’

’

%

KLp ĞfθpX1q, ĞfθpX2qq P P XS,

ρ ´ KLp ĞfθpX1q, ĞfθpX2qq P P XD.

The network is then trained according to the loss function:

LRpθq “
1

|PL|

ÿ

PPPL

hθpP q `
λR

|PU |

ÿ

PPPU

hθpP q.

Here, PL and PU denote the sets of sub-sequence pairs in PS Y PD formed from the labeled

and unlabeled data, respectively, and λr is a tuning parameter which controls the influence of the

unsupervised part of the loss function.

3.3.4 Training a classifier

Once trained, the network fθ is fixed. The mean empirical distribution for an input sub-sequence

X , ĞfθpXq, can then be used as a representation of X that can serve as input to classifier network

fψ. We use a 2-layer feedforward neural network followed by a softmax function to obtain a dis-

tribution over the different classes. Labeled as well as unlabeled sub-sequences (which correspond

to the generated pairs from change-points) are passed through this classification network. Since

the learned representations encourage unlabeled data points to cluster around provided labeled

data points, known semi-supervised methods can be also used to incorporate unlabeled data while

training fψ. We use entropy regularization [43] to exploit the unlabeled data by encouraging the

classifier boundary to pass through low density regions.

The training data is comprised of two sets: XL and XU . Each element of XL consists of a

pair pX, Y q, where X denotes a sequence x1, . . . , xN of vectors in RD and Y denotes a one-hot
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encoding of the class label for X (and is hence in RC where C is the number of classes). Each

element of XU consists of a sub-sequence X identified by the change-point detection step (i.e., the

individual sub-sequences in the set PU ). The loss function that we use to train fψ is given by:

LCpψq “
1

|XL|

ÿ

pX,Y qPXL

LCEpX, Y q `
λC

|XU |

ÿ

XPXU

LNEpXq.

Here, λC is a tuning parameter, LCE is the cross entropy loss, and LNE is the negative entropy loss:

LCEpX, Y q “ ´

C
ÿ

c“1

Yc log fψ
`

ĞfθpXq
˘

c

LNEpXq “ ´

C
ÿ

c“1

fψ
`

Ğfθ pXq
˘

c
log fψ

`

ĞfθpXq
˘

c
.

Above, fψ represents the output of the feedforward classification network which ends with a

softmax distribution over C classes. The input to fψ is the mean empirical representations learned

by network fθ for input sequence X . The negative entropy loss encourages the network fψ to pro-

duce low entropy empirical class distributions for unlabeled data. This encourages unlabeled data

to be mapped to a distribution that concentrates on a single class, pushing the classifier boundary

to fψ towards low-density regions.

A summary of our overall approach to semi-supervised learning via change-point detection is

given in Algorithm 2.

3.4 Experiments

3.4.1 Baselines

All of the following baselines use the same representation network fθ and classification network

fψ architectures.
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Algorithm 2 SSL via change-point detection

Inputs: Unlabeled sequence X , labeled sequences tXl, Yl}, CP detection parameters τ, w,
Output: Trained networks: fθ, fψ
Init: Add similar/dissimilar pairs from tXlu to PS,PD
for i “ 1 to lengthpXq do

Form windows: X i
p, X

i
f

mi “ MMDpX i
p, X

i
f q

if mi ą τ then
Form two segments before CP: X i

p1, X
i
p2

Form two segments after CP: X i
f1, X

i
f2

Add pairs pX i
p1, X

i
p2q and pX i

f1, X
i
f2q to PS

Add pairs (X i
f1, X

i
p2) and pX i

f2, X
i
p1q to PD

end if
end for
for j “ 1 to num epochs do

Train network fθ by optimizing loss LR

end for
for j “ 1 to num epochs do

Train network fψ by optimizing loss LC

end for

Supervised

In the supervised setting, only the labeled sequence is passed through through both the repre-

sentation fθ and classifier networks fψ. We train the two networks in an end-to-end manner by

minimizing:

LSpθ, ψq “
1

|XL|

ÿ

pX,Y qPXL

LCEpX, Y q.

Denoising autoencoder

A denoising autoencoder [47] or its variants such as the ladder network (where the reconstruction

error for intermediate layers is also minimized) [48] are often employed for semi-supervised learn-

ing with sequential data. Since it has been previously shown that the performance gap between

these approaches is marginal [48] – which we have observed as well – we focus only on the au-
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toencoder as a baseline. In this approach, for every X P XU , we also consider a perturbed version

pX produced by adding noise to X . Both X and pX are passed through an encoder network fθ to

obtain embeddings which are used by a decoder network f 1
θ to reconstruct the unlabeled data. A

reconstruction loss of the form CpXq “ }X ´ f 1
θpfθp

pXqq}2 is incorporated into the loss function

to exploit the unlabeled data. The labeled data is first passed through the encoder network fθ to

obtain embeddings, which are then fed into a classifier network fψ. We train the two networks in

an end-to-end manner by minimizing:

LAEpθ, ψq “
1

|XL|

ÿ

pX,Y qPXL

LCEpX, Y q `
λC

|XU |

ÿ

XPXU

CpXq.

Table 3.1: Classifier performance for mean, variance change

Method 10 labels 30 labels

Supervised 0.90 ˘0.02 0.98 ˘0.01
Autoencoder 0.87 ˘0.03 0.99 ˘0.01
SSL-CP 0.99 ˘ 0.01 0.99 ˘ 0.01
SSL-CP (ER) 0.99 ˘ 0.01 0.99 ˘ 0.01

3.4.2 Synthetic experiments

In all of the results below, we use the mean F1 score (unweighted) as an evaluation metric. In all

synthetic simulations, we split the data in a 70/30 ratio where we use the larger split for training

and the smaller split as a test dataset. We further split the training data in a ratio of 10/60/30.

We use the smallest of these splits to obtain labeled data, the largest as unlabeled data for the

semi-supervised setting, and the last split for validation. We use a small sub-sequence (comprising

of 20 segments) in the unlabeled split to tune the parameters for change-point detection. In our

results, SSL-CP denotes our approach to semi-supervised learning via change-points, but without

the inclusion of the negative entropy term in the loss function. SSL-CP (ER) denotes our approach
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Figure 3.3: T-SNE visualizations for the representations learned by the representation network
(fθ) on the Mackay-Glass example when 5 labels are provided from each class. Figure 3.3a shows
representations learned by an autoencoder using both labeled and unlabeled data. It can be seen
in Figure 3.3b that different classes overlap in this representation. Figure 3.3c show the repre-
sentations learned by SSL-CP, which are clustered and non-overlapping. This leads to improved
classification when limited labels are provided. True labels for these representations are shown in
Figure 3.3d.

when including this entropy regularization term.

This example consists of data generated by a univariate normal distribution that switches its pa-

rameters pµ, σ2q every 500 samples. We use 1500 such random switches to produce a sequence of

data with five classes, correspond to the parameter settings tp2, 0.1q, p4, 0.1q, p4, 0.7q, p10, 0.1q, p0, 0.1qu.

We use the symmetrical KL divergence from ( 3.1) to detect change-points in the unlabeled data.

This is a simple change-point detection problem where we detect all change-points correctly. We
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use small sub-sequences of length 20 as labeled and unlabeled data. and we show the resulting

performance in Table Table 3.1. This is a relatively simple sequence classification problem as it

requires merely learning that the mean and variance determine class membership. Both the super-

vised and autoencoder baselines do reasonably well. However, classes 2 and 3 have the same mean

but different variance, and both baselines struggle compared to SSL-CP in separating these classes

when only 10 labels are provided.

Mackay-Glass equation

The Mackay-Glass equation [56] is a non linear time delay differential equation defined as

dpxptqq

dptq
“ ´0.1xptq `

βxptqpt ´ τq

1 ` xpt ´ τq10
.

In a manner similar to [57], we generate a sequence by randomly switching between parameters

pβ, τq P tp0.2, 8q, p0.18, 16q, p0.2, 22q, p0.22, 30qu every 1400 samples. We define class member-

ship according to the parameter settings of each segment. We generated 2000 such segments and

added N p0, 0.1q noise to the entire sequence. A small sub-sequence is shown in Figure 3.4. We

obtained pairs of sequences of size 100 using change points detected on the unlabeled dataset,

where almost all true change-points were detected correctly. There were about 4000 such pairs.

We obtained 8100 non-overlapping windows of size 100 from the unlabeled-split for use by the

autoencoder. Labeled data is also formed using non-overlapping windows of size 100 were used

as labels. Table Table C.1 shows results for different numbers of provided labels. We see that

SSL-CP approach significantly outperforms the baselines. The representations learned by the au-

toencoder and SSL-CP are visualized in Figure 3.3, which illustrates that the autoencoder does not

perform as well because it fails to learn representations that exhibit sufficient clustering. The in-

fluence of varying the number of provided pairs is shown in Table Table 3.3. We note that entropy

regularization enhances the performance of SSL-CP when amount of unlabeled data is large.
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Figure 3.4: Example switching Mackay-Glass sequence.

Table 3.2: Mackay-Glass: Classifier performance for different number of labeled examples

Model 20 labels 30 labels 60 labels

Supervised 0.55 ˘0.07 0.86 ˘ 0.04 0.95 ˘ 0.02
Autoencoder 0.73 ˘ 0.04 0.90 ˘ 0.02 0.98 ˘ 0.01
SSL-CP 0.96 ˘0.02 0.98 ˘ 0.01 0.99 ˘ 0.01
SSL-CP (ER) 0.99 ˘ 0.02 0.99 ˘ 0.01 0.99 ˘ 0.01

3.4.3 Real-world datasets

HCI: Gesture recognition

The HCI gesture recognition dataset consists of a user performing 5 different gestures using the

right arm [58]. Data is obtained from 8 IMUs placed on the arm. The gestures recorded included

drawing triangle up, circle, infinity, square, and triangle down. We also consider the null case

(where the user is not performing an activity) as a class. We use the free-hand subset from this

dataset as it presents a relatively challenging classification problem when compared with the more

controlled subset. Rather than using consecutive non-overlapping windows (as the resulting sub-

sequences are too small to contain a single class, since the duration of the null class can be very

small), the sequential data is first divided into 100 segments using the labels. 30 segments are left

as test data.
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Table 3.3: Mackay-Glass: Classifier performance for different amounts of unlabeled data

Model 600 Pairs 1800 Pairs 4000 Pairs

SSL-CP 0.87 ˘0.2 0.94 ˘0.1 0.96 ˘0.1
SSL-CP (ER) 0.87 ˘0.2 0.95 ˘0.1 0.99 ˘0.2

Table 3.4: HCI: Mean classifier performance when using one label per class

Supervised Autoencoder SSL-CP

0.63 0.68 0.72

This dataset presents a challenge to the SSL-CP approach in that most classes never appear

adjacent to each other in the data set as they are always separated by a period in the null class. To

obtain similarity constraints involving class pairs that do not include the null class, we generate

a sequence by repeating a randomly sampled segment and concatenating it with another repeated

randomly sampled segment. Change detection is then applied on this concatenated sequence to

provide similar and dissimilar pairs. 600 of such similar dissimilar pairs were obtained.

When all labels within the dataset are provided, the mean F1 score for the supervised approach

is 0.88. Such a score can actually sometimes be achieved by the supervised classifier even when

only 1 label from each class is provided. However in this setting, the results can vary dramatically

depending on exactly which instances are labeled. We obtained classification results across 30

trials, with a different random choice of which instance in each class were labeled. We show the

average results in Table Table 3.4. In Table Table 3.5 we show the percentage of trials in which

each method performed best.

WISDM: Activity recognition

The WISDM activity recognition dataset [58] consists of 36 users performing 6 activities which

include running, walking, ascending stairs, descending stairs, sitting, and standing. Data is col-

lected through an accelerometer mounted on the participant’s chest which provides 3 dimensional
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Table 3.5: HCI: Trial Percentage for method performing best when using 1 label per class

Supervised Autoencoder SSL-CP

11% 26% 63%

data sampled at 20Hz. For our experiments, we retained data from users 33, 34, and 35 as test

set. We split the data from the rest of the users in a 70/30 ratio, using the large split for training

and the small split for validation. We used a small sub-sequence (consisting of about 20 change-

points) to tune the change detection parameters. Once tuned, we obtained change-points on the

entire training set to obtain pairs of size 50. We obtained a total of about 4000 such pairs. We

used about 7000 non-overlapping windows of size 50 as unlabeled data for the autoencoder. We

used non-overlapping windows of size 50 as labeled data. In all experiments, we used a balanced

number of labels from each class.

Table Table 3.6 shows results when 48 labels (6 from each class). When pairs from all detected

change-points within the training set (4000 in number) are used, the performance of SSL-CP is

slightly worse than that of the autoencoder. This is because many false change-points are detected

(up to about 40% false change-points) for a small number of users, leading to erroneous similarity

constraints. After the removal of 10 such users, the number of falsely detected change-points is

reduced (to below 10% across all users) and about 1600 pairs are obtained. The performance

of SSL-CP for this case (filtered users) is notably better than the autoencoder. The performance

further improves when all true change-points are provided. In such a case, the number of unlabeled

pairs are larger leading to improved performance of entropy regularization as well. Figure 3.5

shows the relationship between classification performance and the number of labels available. In

this experiment, only pairs derived from change-points on the filtered users are used.
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Table 3.6: WISDM: Classifier performance with 48 labels

Method F1 score

Supervised 0.45 ˘ 0.04

Autoencoder 0.54 ˘ 0.02

SSL-CP (All users) 0.53 ˘ 0.03

SSL-CP (Filtered users) 0.65 ˘ 0.02

SSL-CP (True CPs, all users) 0.66 ˘ 0.01

SSL-CP-ER (Filtered users) 0.65 ˘ 0.01

SSL-CP-ER (True CPs, all users) 0.69 ˘ 0.01
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Figure 3.5: Performance on WISDM as the the number of provided labels increases. (Filtered
users)

3.5 Discussion and conclusion

As highlighted by the performance on the WISDM dataset, the performance of our proposed

method depends critically on the successful detection of change-points. The detection of too many

false change-points can lead to corrupt similarity/dissimiarity constraints, that can potentially dete-
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riorate performance. The other main limitation of the SSL-CP approach is that obtaining a rich set

of similarity/dissimilarity constraints across all possible combinations of classes requires that these

classes appear adjacent in the data. However, as we observed in the HCI dataset, the generation of

additional sequences can provide a synthetic solution to this problem that is effective in practice.

Despite these limitations, SSL-CP consistently outperformed our baselines on both synthetic

and real-world datasets. This clearly shows the potential utility of incorporating information from

change-points in semi-supervised learning. Moreover, the results on the WISDM dataset clearly

illustrate the potential improvement that could be realized by a more robust change-point detection

procedures.
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CHAPTER 4

LEARNING SINKHORN DIVERGENCES FOR CHANGE-POINT DETECTION

4.1 Introduction

As we discussed in the introduction of this thesis, change-point detection approaches can be

broadly classified as either offline methods that focus on partitioning a complete sequence [9]

or online methods that that can operate in a streaming setting. Online methods can vary in whether

their focus is to rapidly detect a single change point (e.g.,[59]) or to detect a sequence of multiple

change points (e.g.,[12, 30, 60, 61]). What nearly all of these online approaches have in common is

that they are fundamentally unsupervised. This makes it particularly challenging to identify subtle

changes, especially in the high-dimensional setting. Most of these methods employ a fixed mea-

sure of divergence over sliding windows to detect changes in a streaming setting, and there is not

a mechanism for incorporating information about what kinds of changes should be detected and

what kinds of changes should be ignored. Consider the example in Figure 4.1A, where true change

point instances are shown by vertical red lines. These vertical lines indicate that true change points

are associated with changes in the variance of the yellow signal. Most existing online change point

methods cannot exploit this information, and as a result, often detect spurious changes. Incorpo-

rating labeled change point information could facilitate change detection methods in identifying

what kinds of changes we wish to detect and what kind of changes we may wish to ignore.

In this chapter, we propose a contrastive metric learning framework to both improve change

point detection performance and improve interpretability. We do this by learning a ground metric

for Sinkhorn divergences to discriminate between different types of changes in our data. Sinkhorn

divergences are computationally efficient variants of optimal transport distances that compute dis-

The work in this chapter is currently under peer-review and is available as a preprint at [4]. Parts of this chapter
consisted of collaborations with Carolina Urzay and Mehdi Azabou that were presented in [5].

61



tances over a given metric. We show that we can use available change points to learn this metric to

highlight changes of interest. This can both improve change point detection over unsupervised and

non-parametric based approaches, and also reveal interpretable maps of which features are most

important.

After training the metric on labeled change points, we show that the method can be deployed

on sliding windows to capture change points with high accuracy and limited amounts of data and

computation.

4.2 Background and related work

4.2.1 Change point detection

Change points are instances within a sequence where the underlying data generating distribution

changes. Concretely speaking, let X denote a sequence x1,x2, . . . ,xt P Rd. We say that X

has a change point at index nc if xnc ,xnc`1, . . . are generated according to a different distribution

from xnc´1,xnc´2, . . .. The most widely used algorithms for sequential change point detection

are parametric approaches such as CUSUM and GLR. Both of these methods model changes as

parametric shifts in the underlying distributions and operate on statistics formed from the log-

likelihood ratio between the pre-change and post-change distributions [10, 20, 34, 59]. These

methods are best suited to detecting a single change in the quickest time (given some false alarm

constraint) mostly in settings where simple parametric models are realistic.

Over the past decade, there has been an increasing focus on non-parametric change point de-

tection methods that operate over sliding windows. Integral probability metrics such as the kernel

ratio, the maximum mean discrepancy (MMD), and Wasserstein distances are then used in a two-

sample test detect change points [12, 60, 61]. Other kernel methods such as the Hilbert Schmidt

Independence Criterion with ℓ1 regularization (HSIC Lasso) have used sliding windows for fea-

ture selection in high dimensional change point settings [62]. Wasserstein distances provide an
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alternate way to conduct two-sample tests without needing to tune kernel bandwidth parameters.

Some recent works have also used neural network autoencoders and GANs to learn (unsuper-

vised) representations that can then be used in sliding windows to detect change points [30, 63].

Other methods try to learn neural network representations that minimize representation distance

for nearby sub-sequences while maximizing representation distance for far away sub-sequences

[64]. This is different than our method where use triplet pairs from true change points to learn a

ground metric for Sinkhorn divergences.

All of these methods detect change points in an unsupervised way. There is, however, limited

work that incorporates supervision in the form of labeled change points. Most of this work (see [7,

65–67]) is restricted to the offline change point setting where a provided sequence is partitioned

into segments, as opposed to the sliding window setting that we consider here. These segmenta-

tion methods often require predetermining the number of change points to detect. Other supervised

methods treat change point detection as a classification problem where the goal is to predict the

time instances where a change point may be located [68, 69]. All of these methods address a differ-

ent problem of detecting change points in a provided sequence in an offline manner. Our method

on the other hand addresses the problem of detecting change points through sliding windows in

streaming data settings. As compared to existing supervised change point detection methods, our

method provides a framework for learning a metric that can be used by divergence measures for

detecting change points over sliding windows. There has been relatively little work in literature

that explores how metric learning can be used to complement change point detection performance.

This makes our contributions to the literature novel. The most similar work to our approach seems

to be a method developed in parallel where true change points are used learn a sparse Mahalanobis

metric for change point detection using provided triplet sub-sequences [70]. Though this method

also attempts to address the offline change point detection task where a given sequence is to be par-

titioned into different segments, as compared to our method which equips divergences over sliding

window with a learned metric for change detection on streaming data.

63



4.2.2 Wasserstein distances and Sinkhorn divergences

Wasserstein distances compute the minimal cost of transporting mass from one distribution to

another. Concretely, consider two discrete multivariate distributions α and β on Rd. We can

express these distributions as

α “

n
ÿ

i“1

aiδxi
and β “

m
ÿ

j“1

bjδyj
,

where δx is the Dirac measure at position x P Rd, so that the xi and yj denote the mass locations

for the distributions and ai, bi P R` are the weights at these mass locations for α and β respec-

tively. The ground cost metric C P Rnˆm represents the transportation cost between each pair of

distribution mass locations. In this work, we consider Wasserstein 2 (W2) distances that use a

squared distance ground cost metric, where the pi, jqth entry of C is given by

Ci,j “ }xi ´ yj}
2
2.

As the goal is to minimize the cost of moving mass between two distributions, Wasserstein dis-

tances require computing a transport plan P that dictates how mass is transported between the

distributions. This is done by solving the following optimization problem:

Wpα,βq “ min
P

xC,P y,

subject to P P Rnˆm
` ,P J

1n “ b,P1m “ a,

where xC,P y is the Frobenius inner product between the cost matrix C and the transport plan P ,

a and b contain the mass weights for the distributions α and β, and 1n P Rn is the vector of all

ones.

Wasserstein distances can be unstable and computationally expensive to compute, requiring
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Opn3 log nq computations to evaluate in the case where n and m are of the same order. This makes

it difficult to use Wasserstein distances repeatedly in two-sample tests. Additionally, the minimiza-

tion problem can also be sensitive to slight changes in the input. One solution to these problems is

to add a regularization term HpP q to form the entropic regularized Wasserstein distance Wγ [15,

71]. This is also known as the Sinkhorn distance and is defined as

Wγpα,βq “ min
P

xC,P y ´ γHpP q, (4.1)

subject to P P Rnˆm
` ,P J

1n “ b,P1m “ a,

where HpP q is the entropy of the transport plan matrix P and is given by

HpP q “ ´

n
ÿ

i“1

m
ÿ

j“1

P i.jplogP i,j ´ 1q,

while γ is a regularization parameter. This regularization terms makes the minimization problem

convex, which makes it less sensitive to changes in input, and can be solved with Opn2q computa-

tions using the Sinkhorn algorithm [15]. Note that the regularized Wasserstein distance is biased

as W2
γpα,αq ‰ 0. An unbiased divergence can be constructed from these regularized Wasserstein

distances and is called the Sinkhorn divergence:

Sγpα,βq “ Wγpα,βq ´
1

2
Wγpα,αq ´

1

2
Wγpβ,βq. (4.2)

The regularization parameter γ allows Sinkhorn divergences to interpolate between Wasserstein

distances and energy distances [72, 73].

4.2.3 Learning a ground metric for optimal transport

While the squared distance is a natural choice for the ground cost metric, when it is available side

information can also be used to learn an improved ground metric. This idea was first explored
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to directly estimate the ground cost given similarity/dissimilarity information for nearest neighbor

classification tasks [74]. Similarity/dissimilarity information was also used to learn a Mahalanobis

ground metric to compare word embeddings through Wasserstein distances in [75]. Unsupervised

ground metric learning has been also leveraged to devise subspace robust Wasserstein distances

[76] that lead to better Wasserstein distance performance in high dimensional settings. This is

done by finding an orthogonal projection of a given rank on the input data such that the Wasserstein

distance between samples is maximized. Ground metric learning has also been used to compare

entire time series/sequences using order preserving Wasserstein distances [77]. In such settings,

time series labels are used to learn a ground metric. Other applications involving ground metric

learning include domain adaptation and label distribution learning [78, 79].

4.2.4 Sinkhorn divergence with learned ground metric

A learned ground metric can be readily incorporated into the calculation of the Sinkhorn diver-

gence. Suppose that we have learned a Mahalanobis metric parameterized by an inverse covariance

matrix M with rank r, and consider the factorization M “ LJL, where L is an r ˆ d matrix.

For mass weight locations xi,yj P Rd, we can express the ground cost matrix in terms of this

Mahalanobis distance as the matrix CL with pi, jqth element given by

CLi,j “ }Lpxi ´ yjq}
2
2.

CL can then be used to compute the Sinhkorn distance:

WL,γpα,βq “ min
P

xCL,P y ´ γHpP q, (4.3)

subject to P P Rnˆm
` ,P J

1n “ b,P1m “ a.
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As before, these parameterized Sinkhorn distances can be used to obtain the parameterized Sinkhorn

divergence:

SL,γpα,βq “ WL,γpα,βq ´
1

2
WL,γpα,αq ´

1

2
WL,γpβ,βq (4.4)

4.3 Proposed method

4.3.1 Sinkhorn divergence on sequences

Before considering how supervised change detection can be performed by combining Sinkhorn

divergence with a learned ground metric, we first clarify how Sinkhorn divergences can be applied

to compare two sequences. Consider two sequences X P RTˆd and Y P RTˆd, where T is the

length of the two sequences (which for simplicity we assume to be equal) and d is the dimension

of each sample in the two sequences. We can construct the empirical distribution of X and Y via

T
ÿ

i“1

1

T
δxi

and
T

ÿ

i“1

1

T
δyi

These empirical distributions take uniform weights of 1
T

at the mass locations. While there are

many other ways to represent the sequences as discrete distributions, this scheme is often [72]

used because of it simplicity. The parameterized Wasserstein distance between the two sequences

can be computed as:

WL,γpX,Y q “ min
P

T
ÿ

i,j“1

P i,j}Lpxi ´ yjq}
2
2 ´ γHpP q (4.5)

subject to P P RTˆT
` ,P J

1T “ 1T ,P1T “ 1T .

Note that we will slightly abuse notation in writing WL,γpX,Y q by letting X and Y denote both the empirical
distribution of the sequences as well as the sequences themselves.
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Figure 4.1: Overview of our approach. In (A-B), we show how labeled change point instances (red
vertical lines) are used to obtain similarity triplets from pre-change (red) and post-change (green)
windows as shown in B. These triplets are then used to learn a linear transformation L that ensures
samples across the change points are far apart and samples on the same side of a change point
are closer. (C) After learning L, we use a two-sample test in a sliding window to perform online
change point detection.

4.3.2 Generating similarity triplets from change points

As shown in Figure Figure 4.1, a true change point can be used to generate similar and dissimilar

pairs of sub-sequences. In Figure 4.1(B), we obtain two sub-sequences before a change point

that are labeled 1 and 2 in red. Mathematically, we refer to these as Xp
1 and Xp

2 respectively.

Similarly we can obtain two sub-sequences after the change point that are labeled 1 and 2 in

green labels. We refer to these as Xf
1 and Xf

2 . Sub-sequences on the same side of the change

should be similar, whereas the sub-sequences on the opposite side of the change points should

be dissimilar. This can be captured mathematically via the Sinkhorn divergence via a constraint

that, for example, SL,γpXp
1,X

p
2q should be smaller than SL,γpXp

1,X
f
2q. Such constraints can be

represented as triplets pX i,X
s
i ,X

d
i q, where Xs

i represents a sequence that is nearer to X i than

Xd
i . From each labeled change point we can construct such triplets.

4.3.3 Learning a ground metric for change detection

Our goal is to leverage the triplets generated from the labeled change points to learn a ground

metric such that the Sinkhorn divergence SL,γ does a better job of highlighting change points.

The metric learning community has been considering similar problems in a range of works [80,

81]. When comparing distributions, the Wasserstein distance, or its variants such as the Sinkhorn
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divergence, can capture differences in geometry of samples in a distribution, helping detect samples

with dissimilar distributions. Equipping Sinkhorn divergences with a learned ground metric can

further improve this ability by transforming the data in a way that highlights dissimilarities (and

de-emphasizes similarities). This can be done by using the triplet loss

lpLq “
ÿ

iPTriplets

“

c ´ pSL,γpX i,X
d
i q ´ SL,γ pX i,X

s
i qq

‰`
, (4.6)

where c is the triplet margin, r.s` is the hinge loss defined as rds` “ maxp0, dq, and SL,γ is the

parameterized Sinkhorn divergence from ( 4.4).

The gradient of the parameterized Sinkhorn divergence between two sequences X and Y with

respect to L can be computed as:

BSLpX,Y q

BL
“ 2L

T
ÿ

i,j“1

P ˚
i,jpxi ´ yjqpxi ´ yjq

J,

where P ˚ is the optimal transport plan computed by solving ( 4.5). The gradient of the triplet loss

function in ( 4.6) is

BlpLq

BL
“

ÿ

vPViol

2L
T

ÿ

i,j“1

P ˚
vi,vsj

pxvi ´ xsvjqpxvi ´ xsvjq
J

´ 2L
T

ÿ

i,j“1

P ˚

vi,vdj
pxvi ´ xdvjqpxvi ´ xdvjq

J, (4.7)

where v is the index for similarity triplets that violate the hinge loss constraint in ( 4.6), P ˚
v,vs

is the transport plan between Xv and its similar pair Xs
v, and P ˚

v,vd is the transport plan between

Xv and its dissimilar pair Xd
v. Algorithm Algorithm 3 shows how this gradient can be used to

learn the linear transform matrix L. Algorithm Algorithm 4 shows how this learned matrix can be

used for change detection over sliding windows. Our method, like all methods based on sliding
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Algorithm 3 Learn transform matrix L for ground metric using similarity triplets from true change
points

Inputs: Set of triplets pX i,X
s
i ,X

d
i q from true change points, Sinkhorn regularization parame-

ter γ, Gradient descent rate µ, Triplet loss constant c
Output: Trained L

Initialize: L0

for t “ 1 to number of iterations do
Identify triplet indices v that violate the hinge constraint
Compute transport plan between similar pairs P ˚

v,vs by solving SLt´1pXv,X
s
vq @ v

Compute transport plan between dissimilar pairs P ˚
v,vd by solving SLt´1pXv,X

d
vq @ v

Use computed transport plans P ˚
v,vd and P ˚

v,vs to form gradient BlpLq

BL

Lt “ Lt´1 ´ µBlpLq

BL

end for

windows, assumes that the length of the windows is large enough to capture the statistics of the

pre-change and post-change distributions. We also assume that the triplet sub-sequences should be

of sufficient length to capture distributional information for learning the ground metric.

Algorithm 4 Using Sinkhorn divergence with learned metric for change detection
Inputs: Sequence X , Window length w, Change threshold τ , Learned L

Output: Detected changes
for n “ 1 to length of sequence X do

Form consecutive windows Xn
p ,X

n
f at index n

mn “ SL,γpXn
p ,X

n
f q using ( 4.2)

if mn ą τ then
Add n to change points

end if
end for

4.3.4 Learning a sparse ground metric

Additional regularization terms can be used in conjunction with the triplet loss to learn a ground

metric that is suitable for different change detection settings. For example, adding a regularizing

with an ℓ1 or a mixed norm loss has been used for learning a sparse metric [82]. We can use the
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same idea for learning a sparse ground metric by considering, for example,

min
L
lpLq ` λ}L}1.

Such an approach aims to learn a metric that depends on only a sparse subset of the original features

in Rd.

4.3.5 Learned metric for two-sample tests using Sinhkorn divergences

Sample complexity results for Sinkhorn distances, Wγ , were given in [83]. A straightforward

extension of these results can be obtained for Sinkhorn divergences.

Proposition 1. If n samples are used to compute the empirical distributions pαn „ α and pβn „ β

on Rd, where pαn “
řn
i“1

1
n
δxi

and pβn “
řn
j“1

1
n
δyj

, then the deviation of the Sinkhorn diver-

gence between these empirical distributions from the true distributions is bounded with probability

1 ´ δ:

|Sγpα,βq ´ Sγppαn, pβnq| ď 12B
ρK
?
n

` C

d

8 logp2
δ
q

n
, (4.8)

where ρ “ Opmaxp1, 1
γd{2 q, K is the maximum value taken by the kernel associated with the dual

Sinkhorn potentials, B is the Lipschitz constant of the function depicting the dual formulation of

entropic regularized Wasserstein distance in ( C.3), while C is the upper bound of this function.

Here C “ κ` γ exppκ{γq, κ “ 2L|X | ` }c}8 and L is the Lipschitz constant of the cost/distance

c between mass locations. |X | represents the diameter of the space of mass locations x P |X |.

Additionally, the Lipschitiz constant B is upper bounded by ď 1 ` expp2κ{γq.

More details for these constants are provided in the Appendix. These sample complexity results

can be used to obtain deviation bounds for the Sinkhorn divergence under the null distribution.

Corollary 3. With probability 1 ´ δ, the Sinkhorn divergence between two n samples α1
n,α

2
n „ α,
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is bounded by

|Sγppα1
n, pα2

nq| ď 12B
ρK
?
n

` C

d

8 logp2
δ
q

n
. (4.9)

As the metric learning loss in ( 4.6) contains similar pairs from the same distribution, an ideally

learned metric would ensure that SL,γpα,αq “ 0, while SL,γpα,βq ě c for dissimilar pairs, where

c is the triplet loss margin. In other words, the Sinkhorn divergence between similar pairs from

the same distribution would be 0 and the Sinkhorn divergence between dissimilar pairs would

be greater than the margin c. If this margin c is set such that c ą Sγpα,βq, i.e., greater than

the Sinkhorn divergence without a learned metric, then it is likely that SL,γpα,βq ą Sγpα,βq.

From ( 4.8), this will likely ensure that SL,γppαn, pβnq ą Sγppαn, pβnq, resulting in a Sinkhorn diver-

gence with increased testing power.

Under the case where both samples come from the same distribution, the results in ( 4.9) show

that when the regularization parameter γ is small, a large dimension of the input distributions can

lead to a large Sinkhorn divergence, which would result in false change points. Learning a ground

metric allows us to enforce a structure on the distribution that improves sample complexity results.

This can be done by projecting the distribution into low-dimensional subspace, as explored in [76,

84]. Learning either a low-dimensional transformation matrix L or a sparse transformation matrix

L reduces the effective dimension of the data distribution, leading to improved performance by

detecting fewer false change points. By reducing the effective dimension we mean that the output

dimensionality r of L could be chosen such that it transforms input data to a space that is lower

dimensional than the original input dimension, or a sparse transformation where the number of

non-zero dimensions is lower than the original number of dimensions. A lower dimensional output

space of L results in a smaller λ for the results in Proposition 1 and Corollary 1, leading to smaller

difference between the empirical and true Sinkhorn divergences, resulting in fewer false change

points. Though transforming input to a lower dimensional space through L can decrease the prob-

ability of detecting false change points, it reduces the number of parameters that are learned by L.
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This may diminish the ability to learn a metric that satisfies the triplet margin constraints between

dissimilar samples, particularly samples from distributions that are close in terms of statistical dis-

tance. Learning L that makes the Sinkhorn distance large between samples from such distributions

would require a more expressive L with higher degrees of freedom.

4.4 Experiments and Results

4.4.1 Evaluation Metrics

We use true change point labels and predicted change scores, which are the computed change

statistics, to generate ROC curves [85] using scikit-learn[86]. These curves relate the false positive

and true positive rates for different detection thresholds on provided change detection scores. We

then report the area under these ROC curves to evaluate change detection performance using the

same protocol as that used in [30, 61]. We also provide F1 scores at detection margins d, such that

a true change point is detected whenever the distance between a true change point location and a

predicted change point location is less than d. F1 scores provide the harmonic mean of precision

and recall for detecting change points, and are more suitable for measuring change detection per-

formance than accuracy. These F1 scores were calculated using the same method that was used for

other change point detection methods in the literature [61].

4.4.2 Datasets

Switching variance. We simulate the AR process

x1ptq “ 0.6x1pt ´ 1q ´ 0.5x1pt ´ 2q ` ϵt,

where ϵt „ N p0, σ2q and σ switches between σ “ 1 and σ “ 5 every 100 time steps. We also gen-

erate a noise vector rx2ptq, . . . , x50ptqs „ N p049, I49qq. We concatenate x1ptq with rx2ptq, . . . , x50ptqs

to obtain a 50 dimensional vector rx1ptq, . . . , x50ptqs where changes are only happening in the first
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Table 4.1: AUC and F1 scores for different change point detection methods on simulated datasets.

Method
GMM Swt Freq

AUC F1 AUC F1

HSIC 0.493 0.423 0.426 0.561
M-stats 0.947 0.664 0.553 0.759

GauSymKL 0.823 0.742 0.428 0.405
TIRET 0.501 0.318 0.551 0.727
TIREF 0.677 0.329 0.647 0.732

KLCPD 0.802 0.486 0.941 0.951
SinkDv 0.778 0.476 0.797 0.759

SinkDivLM 0.974 0.985 0.981 0.972

dimension.

Switching Gaussian mixtures Two 100 dimensional Gaussian mixture distributions α “ N p0, Iq`

N p1,Σ0q and β “ N p0, Iq ` N p1.5,Σ1q were used to simulate a sequence where α and β

switched every 100 samples. Σ0 and Σ1 are diagonal covariance matrices where the first 3 entries

on the diagonal are 3 and 5 respectively, while the rest of the diagonal entries are 1. A training

sequence consisting of 25 changes, of which 80 percent used for training and 20 percent were used

for validation, was used to train the ground metric. A separate testing sequence consisting of 25

changes was used to evaluate performance.

Switching frequency mixture A two dimensional sequence where the first dimension switches

between sinp2πp0.1qtq`sinp2πp0.5qtq`sinp2πp0.3qtq and sinp2πp0.1qtq`sinp2πp0.5qtq`sinp2πp0.35qtq

every t “ 100. The second dimension switches between sinp2πtq`sinp2πp1.5qtq`sinp2πp1.70qtq

and sinp2πtq ` sinp2πp1.5qtq ` sinp2πp0.35qtq every t “ 100. These sequences are generated

such that there are 10 samples per second. Both these dimension have N p0, 0.1q noise added. 15

changes points are used to train the ground metric, 4 are used for validation. A different sequence

consisting of 19 changes points is used as the test set.
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Table 4.2: AUC and F1 scores for different change point detection methods on real-world datasets

Method
BeeDance HASC(’11) HASC(’16) Yahoo ECG

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

HSIC 0.543 0.796 0.603 0.643 0.591 0.697
M-stats 0.494 0.741 0.605 0.651 0.751 0.772 0.737 0.580 0.844 0.321

GauSymKL 0.485 0.312 0.779 0.737 0.750 0.791 0.780 0.349 0.803 0.606
TIRET 0.539 0.693 0.659 0.712 0.643 0.727 0.865 0.531 0.747 0.381
TIREF 0.556 0.693 0.725 0.710 0.712 0.731 0.871 0.546 0.900 0.411

KLCPD 0.632 0.805 0.663 0.692 0.742 0.771 0.932 0.580 0.810 0.566
SinkDv 0.556 0.773 0.757 0.815 0.717 0.750 0.942 0.654 0.900 0.680

SinkDivLM 0.682 0.854 0.803 0.824 0.759 0.801 0.946 0.675 0.899 0.679

Switching frequency mixture with slopes This includes the frequency switching dataset con-

catenated with 48 additional dimensions whose slopes change every 1000 samples, resulting in a

50 dimensional dataset. True change point are only labeled at instances where the frequencies in

the first two dimensions change. For 24 of the additional dimensions the slope changes from a

gradient of -0.06 to 0.06, and for the other 24 dimensions the slopes change from 0.06 to -0.06.

All of the slope dimensions have N p0, 0.0001q noise added.

Real world datasets

Real world datasets

Bee Dance Bees are tracked using videos to obtain three dimensional sequences, where the first

two dimensions represent the x,y coordinates for bee location, while the third dimension shows the

bee heading angle. Instances where the bee waggle dance changes from one stage to the other are

labeled as change points. The dataset consists of 6 sequences. We used two sequences for training

and validation, while the rest of the sequences are used as test datasets. In total there are 15 change

points that are used for training, of which 12 are used for training and 3 for validation.
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Figure 4.2: Results for the switching GMM dataset. On the left, we show the change point statistic
for the Sinkhorn divergence with (SinkDivLM) and without (SinkDiv) a learned metric. The red
vertical lines show true change point locations. To the right, we show Type 1 vs Type 2 errors for
both approaches as we vary the (B) window sizes and (C) amount of added noise. The experiment
is repeated 5 times with different seeds which are shown in fainter lines.

HASC (Activity Detection) HASC-2011 and HASC-2016 datasets consists of people perform-

ing different activities such as walking, running, skipping, staying. An accelerometer provides a

three dimensional sequence where changes are labeled when there is a change in activity. A single

sequence from HASC-2016 was used for true labels and training the ground metric. This sequence

provided 15 true change points of which 80 percent are used for training and 20 percent for vali-

dation. The rest of the 89 sequence datasets in the HASC-2016 are used as test datasets. A single

sequence dataset, the same used by [30], from HASC-2011 is also used as a test dataset.

Yahoo 15 sequences containing change points that indicate a change in different metrics, such as

CPU usage, memory usage, etc. All sequences are one dimensional. We use 3 change points from

one of the 15 sequences to train our metric and use the rest of the sequences for evaluation.

ECG A single dimensional sequence containing change point labels at Ischemia, or abnormal

heartbeat, instances. We split the dataset for training and testing, and use 21 change points for

training and validation, in an 80-20 split.
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Mouse Sleep Stage This dataset consists of a mouse going through different sleep stages [87]

(REm, nREM, and wake) over 12 hours. The dataset consists of the spiking activity of 42 neurons

detected from multi-electrode arrays implanted in the hippocampus. A sub-sequence that contained

14 change points (between REM and nREM) were used to train and validate the learned ground

metric. A different sub-sequence consisting of 28 change points was used as a test dataset.

Baselines We compare the performance of our method (SinkDivML) with different methods that

we classify into two categories: those that require access to true change points for learning a model

and those that do not.

Baselines not requiring access to true change points: These baselines include Sinkhorn diver-

gence without learning a metric (SinkDiv), M-stats [60], HSIC [62], and GauSymKL. GausSymKL

is based on applying symmetrical KL divergences between two sliding windows that are assumed

to follow a Gaussian distribution. The distribution parameters for the windows are estimated

through samples within these windows. It provides a strong baseline for simulated examples in-

volving Gaussian data. We use a symmetrical KL divergence as it is symmetrical for changes in

variance which makes it easier to set detection thresholds [1]. SinkDiv and M-stats do not involve

any model learning whereas HSIC learns a model using pseudo labels only.

Baselines requiring access to true change points: These includes generative neural network

based kernel change point (KLCPD), autoencoder based methods in time domain TIRET, and fre-

quency domain TIREF[63]. Though these models are trained in an unsupervised manner, they

need access to true change labels to tune and validate the learned model. We use the same se-

quence datasets to train and validate these models that we use to train and validate our method. We

also use a supervised version of HSIC (sHSIC) for experiments that involve feature selection in

high dimensional change settings. Rather than using pseudo labels, which HSIC uses, we use true

change point labels for feature selection.

All of these baselines consist of non-parametric change point detection method which make
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the dominant class of recent change methods that are suitable for real-world datasets.

4.4.3 Results

AUC and F1 scores Table 4.1 and Table 4.2 shows the AUC and F1 performance for different

methods on these datasets. As these datasets are mostly either low dimensional or involve changes

in all dimensions , the ground metric is learned without ℓ1 regularization. SinkDivML performs

best on almost all datasets. The Yahoo and ECG datasets involve abrupt instantaneous changes

(and thus involve a very small window size of size 2 and 3 respectively). Our method assumes

that changes persist for some time to learn a metric, and these datasets involve transient changes

leaving very small sub-sequence windows to learn a metric. For this reason, the performance gain

is not prominent on these datasets. Additionally the performance is already relatively strong for

other methods on these datasets, leaving relatively little room for improvement. Results for HSIC

were not available for one dimensional datasets such as Yahoo and ECG as HSIC requires a mul-

tidimensional sequence out of which the most important dimensions are selected. When the one

dimensional sequence is repeated across new artificial dimensions to create new dimensions, HSIC

fails to distinguish between sequences and fails. Details on the detection margins used for these F1

scores can be found in Appendix Section C.1. Our proposed method, SinkDivLM, performs partic-

ularly well on BeeDance and HASC datasets where it outperforms all other baselines. SinkDivLM

performs particularly well on the GMM dataset by learning a metric that involves projection onto

a lower dimension, leading to much better results. This is further discussed in the next section.

Learned Metric improves Type1 vs Type 2 error performance When a ground metric is cor-

rectly learned, the Sinkhorn divergence between dissimilar samples is larger than the provided mar-

gin constant c in ( 4.6). This results in the change point statistics between dissimilar sub-sequences

being larger than the change point statistics between similar sub-sequences, which makes it easier

to set a threshold that correctly detects true change points with out detecting many false change
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Figure 4.3: Type 1 errors vs detection threshold for learned L. As we decrease the dimensionality
r of the output space of L, type 1 errors decrease for the same detection threshold.

points.Figure 4.2a shows how a learned metric leads to a larger change statistic between dissimilar

sequences, which improves change point detection performance. A larger Sinkhorn divergence be-

tween dissimilar sequences also leads to improved results on real-world datasets such as BeeDance

and HASC. SinkDivLM leads to major improvements on real world datasets such as BeeDance and

HASC(2011,2016) which are widely used in other change point detection works [30, 61, 63].

Figures Figure 4.2b and Figure 4.2c show the relationship between the probability of having

type 1 and type 2 errors between samples from the two 100 dimensional Gaussian Mixture Models,

that are used in the GMM switching dataset, at different noise and window sizes. A type 1

error occurs when a sample from the null hypothesis is incorrectly judged to be from the alternate

hypothesis, while a type 2 error occurs when a sample from the alternate hypothesis is judged

to be from the null hypothesis. Samples for the null hypothesis were generated using α, while

samples for the alternate hypothesis were generated using β described in Subsection 4.4.2. Solid

lines represent the Sinkhorn divergence with a metric that is learned without added noise using

10 samples from each distribution, while dashed lines represent Sinkhorn divergence without a

learned ground metric. For Figure 4.2b, noise of N p0, 2Iq was added. InFigure 4.2c 10 samples
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(b) A sequence from the HASC dataset

Figure 4.4: Figure 4.4a shows an example sequence with true change points shown by vertical
lines. It can be seen that changes are often associated by changes in the variance of the third
dimension signal. The learned metric in Figure 4.5a captures this information as the 3 dimension
is associated with a much larger value as compared to other dimensions. The 2nd subplot in
Figure 4.4a shows the learned change statistic for Sinkhorn divergence with the learned metric. It
does a much better job at identifying change points than Sinkhorn divergences without a learned
metric shown in the subplot. Similarly, Figure 4.4b shows an example sequence from the HASC
dataset where the learned metric leads to much better performance for SinkDivLM over SinkDiv.

from each distribution were used. Both these figures show that the learned metric achieves lower

type 2 errors at the same type 1 error rates

Type 1 error vs output dimension of L Here we further analyze two samples tests between

samples from two 100 dimensional Gaussian mixture models; α “ N p0, Iq ` N p1,Σ0q and

samples from β “ N p0, Iq ` N p1.5,Σ1q. Σ0 and Σ1 are diagonal covariance matrices where

the first 3 entries on the diagonal are 3 and 5 respectively, while the rest of the diagonal entries

are 1. α is chosen to be the null distribution and β is used as the alternate distribution for these

experiments. An additional noise of N p0, 2q was added to these samples. Figure Figure 4.3 shows

the relationship between type 1 errors and detection thresholds at various values of r, which is the

dimensionality of the output space of matrix L. Type 1 errors incorrectly reject the null hypothesis

as the test erroneously concludes that the noisy samples from the null distribution are generated

by the alternate distribution. For the same threshold, larger output dimensional spaces have larger
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(b) Metric learned for Beedance

Figure 4.5: Figures showing the learned metrics for Beedance and HASC datasets

Table 4.3: Results for different change-point detection method on high-dimensional datasets

Dataset HSIC sHSIC GauSymKL SinkDiv SinkDivLM

Sleep Stage 0.668 0.941 0.857 0.925 0.946
Swch Var 0.868 0.934 0.782 0.567 0.931
Swch Frq/Slp 0.592 0.521 0.12 0.331 0.672

type 1 errors. These results support our discussion in Subsection 4.3.5 where we describe how

high dimensional data can cause Sinkhorn divergences to detect false change points.

Learning a sparse metric for feature selection When ℓ1 regularization is used the learned

ground metric, our method can identify time series dimensions that correspond to changes of in-

terest. For the switching variance dataset, the learned metric L is large in magnitude for indices

corresponding to the dimension in which the variance is changing. The true changes between

REM and non-REM sleep in the mouse sleep stage dataset also correspond to changes in only

some of the 48 dimensions (different neurons), which the ℓ1 regularized ground metric is able to

select. Table 4.3 shows results on switching variance and sleep stage datasets. As these datasets

are high-dimensional, ℓ1 regularization is used to learn a sparse ground metric.
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Figure 4.6: Learned sparse metric for the Sleep Stage dataset.

Though HSIC is presented in [62] as an unsupervised method that finds features that maximize

separation by using pseudolabels at every time instance, we can also use HSIC for feature selection

in a supervised manner by focusing on true change points. Both HSIC and our method aim to focus

on finding a small number of features that can predict changes of interest. However, our method

can also identify multivariate patterns (or correlations in different variables) that must be present

for a change point to be detected. For this reason, when we tested both methods on the switching

frequency with slopes dataset. HSIC fails to identify the correct feature in switching frequency

dataset and mistakenly identifies other dimensions with constant slope as features causing the

change. Moreover, through using a triplet loss in our approach, we can identify features whose

Sinkhorn divergence is smaller for sub-sequences before the change than sub-sequences after the

change. This allows it to correctly to identify the feature of interest causing the change.

Affect of number of change points on performance To better understand how many change

points are needed to learn an effective metric, we conducted experiments for sequences that switch

between 100 dimensional Gaussian Mixture distributions α “ N p0, Iq ` N p1,Σ0q and β “
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Figure 4.7: The top 3 features, or neurons, from the learned metric in Figure 4.6 are visualized in
Figure 4.7a, while Figure 4.7b visualizes top 3 features identified by sHSIC.

N p0, Iq `N pµ1,Σ1q, where Σ0 and Σ1 are diagonal covariance matrices where the first 3 entries

on the diagonal are 3 and 5 respectively, while the rest of the diagonal entries are 1. We vary the

value of µ to simulate different change detection scenarios. These experiments involved learning

a metric with L P R50ˆ100. The sub-sequences used to learn the metric were of length 100.

Figure 4.8a shows the area under the curve (AUC) scores versus the number of change points used

to learn L. The blue curve has µ “ 1.1 (a change of symmetrical KL divergence of 0.17), red has

µ “ 1.3 ( a change of symmetrical KL divergence of 0.23), and orange has µ “ 1.5 ( a change

of symmetrical KL divergence of 0.33). For all these cases, a different test-sequence were used

to test and report numbers. It can be seen that the AUC performance doesn’t change much as

the number of change points are increased. The AUC performance depends on how difficult the

change detection problem is. For sequences involving larger changes, which are associated with

larger KL divergences, a small number of change points can be used to learn a metric that provides

high AUC scores. Figure 4.8c shows the affect of changing the length of the sub-sequences used

to learn a metric. Difficult change detection problems, such as the one involving a symmetrical KL
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Figure 4.8: Figure 4.8a shows the area under the curve (AUC) scores versus the number of change
points used to learn L for three different switching GMM sequences, where each of these se-
quences is 100 dimensional. The mean shift, and hence the symmetrical KL divergence, asso-
ciated with these sequences is smallest for the green sequence and largest for the red sequence.
Figure 4.8c shows the affect of changing the length of the sub-sequences used for learning L for
the most difficult GMM switching sequence which is associated with small symmetrical KL diver-
gence. Figure 4.8c shows the relationship between window size and AUC for the red switching
GMM sequence shown in Figure 4.8a .

divergence of 0.17, are difficult to detect, and increasing the number of change points used to learn

a metric doesn’t improve performance. A larger sub-sequence length is instead more important for

learning a metric from the provided triplet supervision. Like all learning problems, our method

would require available change points to represent the types of changes expected to be encounter

in testing settings. These experiments show that our method can learn an effective metric with a

small number of representative change points.

Window size vs performance As our method uses a divergence test over sliding windows to

compute change point statistics, the detection delay would depend on the window size. A shorter

window size, while reducing detection delay, would decrease the number of samples used to esti-

mate change statistics, leading to false change points. Figure 4.8c provides AUC vs window size

plots on the 100 dimenstional switching GMM dataset. We compare our method with SinkDiv and

GauSymKL. This plot shows that the AUC performance for all methods improves as the window

size is increased. However, when the window size becomes large enough to consume multiple dis-

tributions, which is 100 for this dataset, the performance suffers. For these experiments, SinkDi-
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Table 4.4: Top Neurons identified by SinkDivLM and HSIC along with their normalized impor-
tance values

SinkDivLM Neuron 6 Neuron 15 Neuron 13

1.00 0.81 0.54

HSIC Neuron 15 Neuron 28 Neuron 3

1.00 0.45 0.45

vLM learns an L P R5ˆ100 which maps 100 dimensional input to a 5 dimensional space. Thus

applying Sinkhorn divergences on such a low dimensional space allows our method to achieve

high AUC scores with only a window size of 5. This can allow our method to significantly reduce

detection delays over other change detection methods that also use sliding windows.

Interpretability A learned linear metric can also allows us to interpret how different input fea-

tures contribute to detecting changes. For example, figure Figure 4.5a shows how our learned

metric identifies the third dimension of the input sequence as the most important dimension for

detecting changes. This helps us get a better understanding of what kinds of changes in sequences

are of interest. For the Human activity dataset, the learned metric in Figure 4.5b shows what in-

put features are positively correlated and what features are negatively correlated. These learned

metrics increase the change statistic at true change points, leading to better change detection per-

formance as seen in Figure 4.4. Figure 4.6 shows the sparse learned metric for the Sleep Stage

dataset. This helps us identify what features, or neurons in the hippocampus, are responsible for

causing changes between REM and non-REM sleep stages. Table 4.4 show the top 3 neurons iden-

tified by SinkDivLM and HSIC respectively for causing changes between REM and Non-REM

sleep stages. These neurons are visualized in Figure 4.7a and Figure 4.7b.

85



4.5 Dicussion

In this chapter, we introduce SinkDivLM, a method that uses labeled change points to learn a metric

for Sinkhorn divergences. This learned metric allows Sinkhorn divergences to perform improved

change point detection, which we demonstrate on numerous real world datasets. This metric also

enables interpretation by highlighting the aspects of a time series that most clearly indicate changes

and allows us to learn a sparse metric, which is key in high-dimensional settings.

It can be argued that the availability of true change points could enable a scheme that switches

between different distribution models for change point detection. However, it is not clear how we

can identify what types of distributional models to use, especially in real world settings. These

efforts would require human intervention which often is infeasible in large scale/high-dimensional

datasets. Our metric learning method allows a data-driven approach to learn such a model.

While Sinkhorn divergences provide a powerful tool for distinguishing between samples, they

do not naturally incorporate temporal structure. This means that Sinkhorn divergences cannot,

for example, distinguish a sequence from its temporally inverted counterpart. In some change

detection problems this may prove to be somewhat limiting. One potential way to address this

challenge is to leverage tools from order preserving Wasserstein distances in [77, 88].However,

such distances assume that sequences of the same kind have identical starting instances, a condition

that is violated for two adjacent sub-sequences. Another direction could use recurrent networks

to learn a metric that captures these temporal dynamics. Such a metric, however, would result in

reduced interpretability.

Finally, we note that by incorporating supervision, there is always the possibility that the

learned metric could become unsuitable for sequences when there is a shift in the kind of change

points to be detected so that the supervision is no longer relevant to the desired task. Thus, it is

important to not naı̈vely apply this approach when the labeled change points are not indicative of

the types of changes one hopes to detect.
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There are numerous ways in which we might further improve our method. For example, we

currently train only using similar dissimilar pairs formed using true change points. We can increase

the number of training pairs by using the learned metric to detect additional possible change points

on the training sequences. Falsely detected change points could be used to obtain similar pairs

which could in turn be used to increase the number of similarity triplets for retraining the metric.

We have proposed a method that uses true change information to learn a ground metric for im-

proved change point detection. While requiring only relatively few true change points for training,

we have shown through examples on simulated as well as real-world datasets that our method can

improve change point detection performance. As some examples of change points are often avail-

able in many settings, we believe our proposed method has the potential to be widely applicable in

the real-world.
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CHAPTER 5

CHANNEL SELECTIVE UNSUPERVISED DOMAIN ADAPTATION

5.1 Introduction

Time series analysis is increasingly pivotal in diverse fields such as astronomy, climate science,

neuroscience, healthcare, finance, and industrial monitoring [89–92]. However, due to a variety

of factors including drift, sensor differences, and measurement limitations, there can often be sig-

nificant shifts in the data between the training and testing times [93]. Traditional methods often

struggle with the variability inherent in time-series data, leading to suboptimal performance and

limited generalization. This challenge underscores the need for more robust and adaptable models

that can effectively manage these complexities and leverage the full potential of time-series data.

Recent work has shown the promise of domain adaptation approaches for time series [93–95]

to help address some of these challenges. In this setting, we combine labels on the training set

with unlabeled test data to build a unified encoder even in light of significant shift across the two

sets. Unfortunately, in the context of multivariate (multi-channel) time series, these models fail

when presented with missing channels or when there are significant shifts in individual channels

that cannot be easily corrected for when solving a joint alignment objective across all channels.

This limits the effectiveness of these approaches in real-world scenarios.

To address these challenges, we introduce a novel approach for time series domain adaptation.

Our approach centers on constructing a separable alignment plan between the labeled (source) and

unlabeled (target) data, where the goal is to first align each channel and then align the joint embed-

dings formed after pooling across channels. To achieve a sparse and selective attention of channels

when pooling, we employ a simpler variant of self-attention to select and combine channels, en-

abling the fusion of the channel latent representations into a comprehensive global representation.

88



This method not only enhances adaptability across domains but also allows for discernment in

channel selection and screening, ensuring that only the most relevant and informative channels are

utilized for alignment and inference.

We evaluate the performance of the model on a number of time series benchmarks and achieve

state-of-the-art performance on most tasks. In benchmark tests on a human activity recognition

dataset called WISDM – a fundamental application of time-series analysis – our method achieved

a nearly 6% improvement over the existing state-of-the-art models. Our results and ablations not

only demonstrate the effectiveness of our approach in dealing with complex, multi-channel time-

series data but also highlights its potential in identifying the most informative channels across two

datasets for diagnostic and interpretation purposes.

Our contributions include:

Novel method for time series domain adaptation. We develop a new method that builds a sep-

arable alignment plan that aligns each channel independently before pooling across channels and

aligning the fused representations.

Channel selection and screening via a self-attention layer. Our method employs a self-attention

layer for sparse and selective attention of channels. This allows for the efficient selection and

combination of only the most relevant channels, leading to the formation of a robust global repre-

sentation that is representative of the essential features in the data even in the context of significant

shifts in some channels (see Fig. Figure 5.1).

State-of-the-art performance in time-series classification benchmarks. Our approach achieves

state-of-the-art performance on a number of datasets, and achieves a 6% improvement in accuracy

over existing state-of-the-art methods on the WISDM human activity dataset. This result under-

scores the effectiveness of our method in handling shifts in complex, multi-channel time-series

data.

Interpretability. Our approach not only excels in performance but also provides insights into the

most informative channels across datasets. This feature is particularly beneficial for diagnostic
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Figure 5.1: Large domain shifts in certain channels can cause incorrect classes to be aligned be-
tween the source and the target domains. (A) shows such a case where the blue channel causes
class 1 in the source domain to be aligned with class 2 of the target domain (and vice versa).
(B) shows how ignoring the blue channel leads to correct class alignment between domains. Our
proposed method aims to address such cases by selecting and screening channels to enable more
robust alignment and adaptation.

purposes, allowing practitioners to understand which channels provide the most joint information

across the source and target.

5.2 Background and Related Work

5.2.1 Domain adaptation

Many real-world scenarios require adapting a model which is trained on a source labeled dataset

to a related unlabelled target dataset. This related dataset can have a shift in either the unlabeleld

data (feature shift), or the (unavailable) labels in the target domain.

Domain adaptation methods try to improve prediction performance on unlabelled target domain

data by leveraging source domain labelled data. Most methods addressing feature shift, which is

the domain shift we address in this chapter, make the assumption that the shifted class conditioned
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data in the target domain is closer to the corresponding class conditioned source data in the repre-

sentation space. This means that the source domain representations for a class should be closer to

the target domain representations of the same class than the target representations of other classes

[96–98]. When this assumption is met, making the source and target domain representations in-

variant while simultaneously minimizing the source classification loss can help models adapt to

target domains.

These source and target representations can be made invariant through adversarial learning

[99, 100], or minimizing distances such as the maximum mean discrepancy or Wasserstein dis-

tance [101–103]. Other methods take an alternate approach where source domain labels are used

to generate pseudo labels in the target domain, which are then used to train a model to classify

unlabelled target domain data [104]. Related methods have incorporated augmentations with con-

trastive learning on both source and domain representations to better adapt models to the target

domain [105].

5.2.2 Domain adaptation techniques in time series

Time series domain adaptation methods have mostly adopted methods from vision while utilizing

encoders more suited to time-series data such as RNNs and 1D temporal CNNs. Many methods

utilize adversarial learning [14], or use kernels more suited to time-series data to align source

and target representations [95, 106]. Recent methods have also additionally incorporated pseudo-

labelling and self-supervised contrastive learning through augmentations [107, 108]. As frequency

domain information can be in some cases useful for time series classification tasks, newer methods

have also incorporated source and target domain frequency representations while learning domain

invariant representations [93]. All of these methods pass all time series channels collectively into

a common neural network encoder. There has been no work, to the best of our knowledge, that

develops different representations and domain adaptation schemes for each channel in multivariate

time series.
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5.2.3 Attention mechanisms in time-series analysis

Many machine learning models have incorporated attention mechanism for improved classification

and forecasting. Some of these methods process different time series channels independently by

passsing through neural encoders separately. [109–111]. However, most existing literature focuses

on channel-selection in the context of single-domain data, leaving a gap for methods that apply

these principles effectively in domain adaptation scenarios.

5.2.4 Optimal transport and Sinkhorn divergences

To build aligned representations, we use the Sinkhorn divergence, a robust measure of distribu-

tional similarity. The Sinkhorn divergence is an entropic regularized variant of Wasserstein dis-

tances. The entropic regularization, with regularization parameter γ, allows a computationally

efficient transport plan solution to be obtained through Sinkhorn iterations [15]. This divergence

can then be used to measure how similar two different samples sets are, and thus can be used as a

loss function to make two sample sets similar [112].

More formally, the Sinkhorn distance between two distributions α and β is defined as

Sγpα,βq “ min
P

xC,P y ´ γHpP q,

s.t P P Rnˆm
` ,P T

1n “ b,P1m “ a,

where P is called the transport plan, HpP q is the entropy of the transport plan matrix P and

is given by HpP q “
řn
i“1

řm
j“1P i.jplogP i,j ´ 1q, while γ is a regularization parameter. This

regularization terms makes the minimization problem strongly convex and makes it less sensitive

to changes in input, and can be solved withOpn2q computations using the Sinkhorn algorithm [15].
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5.3 Proposed Method

5.3.1 Overview

Different channels in multivariate time series can capture different information about the phe-

nomenon of interest. In many cases, the end classification or regression task of interest might often

depend on the information contained in a handful of channels. Additionally, individual channels in

a time series might shift in very different manners across domains. Figure Figure 5.1 shows a real

world example in human activity recognition where class 1 (sitting – blue) and class 2 (standing

– red) need to be adapted from the source domain shown in purple to target domain in yellow. In

Fig. Figure 5.1(A), a large domain shift in the blue channel can cause the representations of the

source and target classes to be misaligned which can result in disastrous performance on the target

domain. If this blue channel is simply ignored as in Fig. Figure 5.1B, the target representations

are much likely to align with their respective classes in the source domain, resulting in greatly

improved performance in the target domain.

This example emphasizes the need to develop domain adaptation method that account for shifts

in each channel differently while also having the ability to screen channels involving larger domain

shifts.

5.3.2 Step 1: Align individual channel representations

An input time series X P RCˆT with length T , and C channels is first split into C different, one

dimensional, time series xc P RT , where the superscript c represents the cth channel. Each of

these one dimensional time series is then fed into a channel specific encoder f cθ , to obtain channel

specific representations zc P Rd. These encoders are used to encode both source domain time

series Xs and target domain time seriesX t into zcs and zct for all channels c P C. The source

domain representations for the channels, zCs , are then linearly transformed by W c P RdˆM for

all c P C, where M is the number of classes. A softmax function is then applied on this linear
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Figure 5.2: Overview of our proposed approach. For both the source and the target domain time
series, each of the input channels is fed into channel specific encoders. The source and target do-
main outputs of each of these encoders is domain adapted by minimizing source classification and
alignment loss. All of the domain adapted channel representations are then provided to a chan-
nel weighting layer, which reweights source and target channel representations. These weighted
source and target representations are combined, and then again domain adapted using source clas-
sification and alignment loss.

transformation to produce the class prediction vector ŷcs.

The target representations for all channels can then be aligned with their respective source do-

main representations by minimizing the Sinkhorn distance [15] between the individual source and

target domain channel representations while minimizing the source classification loss. Concretely

speaking, this can be done by solving the following optimization problem for all channels:

min
θc,W c

Sγpf cθ pxcsq, f
c
θ pxcsqq ` LCEpf cθ pxcsqW

c,ysq,

where f cθ and W c are the encoder and linear classifier for channel c whereas xcs,x
c
t are the source

and target inputs for channel c. This can be expressed more succinctly using the representations z

described previously:

min
θc,W c

Sγpzcs, z
c
tq ` LCEpŷs,ysq @c P C

where Sγ is the Sinkhorn distance with regularization parameter γ and LCE is the cross entropy

loss.
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5.3.3 Step 2: Compute a global multi-channel alignment

When combining representations for individual channels, a weighting vector w P RC is computed

to ascertain the importance of each channel. This can help filter unimportant/noisy channels while

selecting channels that are (a) important for classifying source data and (b) are invariant between

the source and target domains.

We obtain the weighting value for the cth channel in this vector w, wc, by linearly transforming

all individual channel representations zc into kc and qc using linear transformations K and Q P

Rdˆd. The inner product between these linear transformations,pqcq⊺kc, is then computed for each

channel after which a softmax non-linear transformation is applied across the vector consisting of

these inner products for all channels to obtain channel weighting scores. Specifically, the weighting

vector w can be obtained by:

w “ softmax
ˆ

1

τ

„

1
?
d

`

pq1
q
⊺k1, . . . , pqCq

⊺kC
˘

ȷ˙

where τ is the softmax scaling factor. A larger value of τ leads to a weighting vector that is uniform

in its value, leading to the selection of more channels, while a smaller value of τ encourages

a sparser weighting vector. Additionally, the computed inner products are also normalized by

the embedding dimension
?
d in a manner similar to the way it is done for self-attention. The

representations for all individual channels are concatenated to form the matrix Z P RCˆd. A

Hadamard product between the weighting vector w and the concatenated representations matrix

Z is then computed and vectorized into a vector to obtained combined channel representations

za P RdC :

za “ vec pw d Zq “ vec

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

w1z1

...

wCzC

˛

‹

‹

‹

‹

‚

˛
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We can use this selection and screening operation to obtain collective channel representations for

both the source (zas) and target (zat ) time series. The source representations can then be trans-

formed by a linear classifier W a
s followed by a softmax non-linear transformation for source class

prediction.

Relation to self-attention. This channel selection operation can also be expressed as the output

of a modified self attention layer

w “ softmax
ˆ

diag
ˆ

QK⊺

?
d

˙˙

I,

where the values matrix is replaced by the identity, only the diagonal terms of the attention matrix,

which is computed by the inner product of the keys and queries matrices, are kept and the softmax

is computed along this diagonal.

5.3.4 Putting it all together

Our overall alignment and classification loss is a function of all channel encoders (f cθ ) and channel

classifiers (W c):

L “ Sγpzas , z
a
t q ` Lpŷas ,yq

loooooooooooomoooooooooooon

Dom. adapt. for combined reps)

`

C
ÿ

c“1

Sγpzcs, z
c
tq ` L⌋pŷ

c
s,ysq

looooooooooooomooooooooooooon

Dom. adapt. for each channel

,

Figure 5.2 shows the overall model for our proposed method. Time series are first split into dif-

ferent channels, and each of the split channels is fed to a channel specific encoder and a chan-

nel specific classifier (the border color of the encoder and the classifiers is used to indicate how

these networks serve as channel specific modules). The source and target representations for each

channel are aligned through Sinkhorn distances, which are shown in black, while simultaneously

minimizing the source classification loss for the representations of these channels. All channel

representations are then used to obtain channel weighting scores which are used to reweight chan-
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nel representations. These reweighted channel representations for the source and target domain are

concatenated and then aligned across domains in a similar manner as before.

5.3.5 Intuition behind our method

Different time series channels can carry more diverse information than channels within other

modalities such as images. As a result, many real-world time series classification problems can

often heavily depend on a limited number of channels.

Learning separate classifiers for each channel, which is required as part of our method in Sub-

section 5.3.2, leads to individual channel representations that try to maximize the mutual infor-

mation between each channel input and source label data. The weights produced by the signal

selection and screening layer can select the most informative of these representations across all

channels for the final classification output of the model. These weights can lead to sparse selection

of individual channel representations for supervised classification, helping ignore uninformative

channels.

At the same time, a supervised loss on the source domain is combined with a loss that mini-

mizes the Sinkhorn distance between source and target data for each channel, the signal selection

and screening layer now produces weights that still aim to be informative in terms of classification

on the source domain, but also leads to better overall alignment between the source and target do-

mains. Thus, in addition to helping to ignore channels that are uninformative for classification in

the source domain, this also helps de-emphasize channels that do not align well between the source

and target domains. As we will see, this can ultimately significantly improve domain adaptation

performance.
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Table 5.1: Mean accuracy and macro F1 scores for different domain adaptation methods

Method
Simulation UCIHAR HHAR PXECG WISDM WISDM-Bal

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Sup 43.12 0.423 77.04 0.750 59.40 0.543 63.51 0.366 64.90 0.504 65.84 0.521
DANN 71.32 0.70 82.91 0.857 71.27 0.678 62.87 0.347 67.94 0.567 73.86 0.683

AdvSKM 74.31 0.712 85.12 0.813 63.25 0.616 62.98 0.372 69.92 0.581 71.19 0.611
CoDATS 54.31 0.531 86.34 0.856 68.79 0.686 66.30 0.366 68.35 0.548 75.15 0.665
CDAN 79.54 0.81 84.59 0.836 70.06 0.704 64.29 0.375 70.12 0.517 70.29 0.661

DeepCoral 82.34 0.841 86.53 0.851 66.16 0.690 62.60 0.346 72.72 0.605 74.31 0.649
CLUDA 78.21 0.802 82.45 0.854 67.03 0.641 64.92 0.324 65.57 0.504 73.77 0.699
SinkDiv 73.11 0.713 85.13 0.876 69.64 0.720 64.97 0.376 67.16 0.578 70.98 0.648
Raincoat 73.11 0.713 89.13 0.873 62.11 0.603 66.22 0.357 62.11 0.523 69.09 0.727

SSSS-TSA 99.01 0.985 90.12 0.901 72.19 0.737 66.38 0.419 75.19 0.635 83.57 0.816
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Figure 5.3: Domain adaption performance when target domain in HHAR dataset is further shifted
through corrupted channels. From left to right, we compare our method to baselines in an (a)
additive Gaussian noise setting, (b) saturated channels setting, and (c) when channels are dropped.

5.4 Experiments and Results

5.4.1 Experimental setup

Simulated mean shift data. We first consider simulated data consisting of 4 dimensional se-

quences of length 128. Source domain data consists of Gaussian i.i.d. data with variance 1, and the

means of these channels shifts between 4 classes. The target domain data is generated by randomly

selecting and shifting one channel mean for each class.

Real world datasets. We consider several real world multivariate time series datasets that are

often used to benchmark domain adaptation methods [94].

UCI Human Activity Recognition (UCIHAR). Data was collected from a group of 30 volunteers
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performing six different activities (walking, walking upstairs, walking downstairs, sitting, stand-

ing, and laying). Each participant was equipped a smartphone with embedded accelerometer and

gyroscope that provides 9 channel data (3 axis body acceleration, 3 axis angular velocity, and 3

axis total acceleration).

Heterogeneity Human Activity Recognition (HHAR). Data consists of different users carrying

various types of smartphones and smartwatches while performing common activities like walking,

sitting, standing, etc. This dataset poses a significant challenge in domain adaptation due to the

variability in sensor outputs across different devices. This data consists of 3 axis accelerometer

data.

PXECG. This is a 12 channel ECG dataset with 5 diagnostic classes. The data is collected from 5

different sites, each of which constitutes a different domain [113].

Wireless Sensor Data Mining (WISDM). Involves time-series data collected from wireless sen-

sors embedded in smartphones. The data typically includes activities like jogging, walking, as-

cending and descending stairs, sitting, and standing. WISDM can be a highly imbalanced dataset

across subjects, which makes it particularly challenging for domain adaptation.

WISDM-Bal. We also take the WISDM dataset and balance classes across source and target

domains to better analyze the performance of our proposed method. We do this to ignore issues in

domain adaptation that arise because of imbalanced datasets, an issue that we do not aim to address

in this work.

As the possible number of domain adaptation scenarios on WISDM, HHAR, and UCIHAR can

be as large as
`

30
2

˘

, we select 10 domain adaptation scenarios for our experiments. More details

on the chosen domain adaptation scenarios and their corresponding results can be found in the

Appendix.

Baselines. The models compared in these experiments include: supervised learning on the

source domain (no domain adaptation), Domain-Adversarial Neural Networks (DANN) [99], Ad-

versarial Spectral Kernel Matching (AdvSKM) [95], CoDATS [14], Conditional Domain Adver-
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sarial Networks (CDAN) [100], DeepCoral, CLUDA [108], Sinkhorn Divergence (SinkDiv) , and

Raincoat [93], alongside our proposed method, SSSS-TSA. The Sinkhorn divergence baseline is

the Raincoat baseline without the frequency domain information. It aligns the Sinkhorn distance

between source and target representations while minimizing the source classification loss. We se-

lect these baselines as these are the methods considered in more recent domain adaptation papers

[93, 108]. The Adatime benchmarking suite is adapted and used to run these baselines [94].

Experiments and evaluation details. We use a 1D CNN neural network as an encoder for all of

our baselines. Most of these datasets provide standardized splits to train models and test splits to

report numbers. As unlabelled target domain data is not available in real world domain adaptation

settings, there is some uncertainty in the community regarding the best way to evaluate domain

adaptation methods. We run all methods for a fixed number of epochs and report numbers at the

end of these. While less common, this scheme has been used by other papers (e.g., [93]) and most

accurately depicts real-world domain adaptation settings. We also report test-set numbers when

models attain their best performance on a validation holdout from the training data in the appendix

(as that is a popular evaluation criteria in literature). We report both macro F1 and accuracy scores

for better evaluation across datasets with varying class imbalances. Each model is run five times

on each dataset to ensure statistical reliability, and the results are averaged to produce the mean

accuracy and macro F1 scores.

5.4.2 Results on time-series classification benchmarks

The results, as shown in Table Table 5.1, demonstrate the superior performance of SSSS-TSA

across a range of datasets. We first note that it is interesting to see how poor the performance of

most baselines is on the simulated dataset. Our method’s performance of 0.98 F1 score underscores

how alignment of channels can lead to significant improvements over approaches that only align

fused or global representations. Our method achieves the highest accuracy and macro F1 score on
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every dataset considered. It often significantly outperforms the second best algorithm, and there is

no alternative algorithm that is consistently close to the performance of our approach.

These results underscore the effectiveness of our approach in domain adaptation for time-series

data. Our method consistently outperform other state-of-the-art models in various complex and

real-world scenarios. The significant improvement in mean macro F1 scores across these datasets

highlights the robustness and adaptability of our approach, particularly in handling the challenges

posed by multi-channel and noisy time-series data. The Appendix contains additional results when

the target labels in validation sets are used to determine the stopping time. While this is not a

realistic metric in a true domain adaptation scenario (as it allows labels in the target domain to

influence the training process), we find that using this evaluation criteria our method continues to

be either competitive or superior to baselines.

5.4.3 Testing on corrupted data

To further test the capability of our method to handle different shifts, we create additional domain

shifts with in the 9 channel HAR dataset. For the domain adaptation setting where the source

domain is subject 2 and the target domain is subject 11, a scenario in which most domain adapta-

tions do well, we enforce three types of additional shifts in the target domain: 1) additive Gaussian

noise, (2) saturating channels, (3) dropping channels. For all these three cases, we can increase the

number of channels affected by these shifts to see how robust domain adaptation methods are to

these channel corruptions.

For the first setting, we add Gaussian noise of mean 0 and variance 2 to randomly selected

channels in the target domain. To simulate channel saturation, we set randomly selected channels to

a large value (we set these channels to 2, which is a larger value for these prepossessed normalized

datasets). Similarly, we drop channels by setting randomly selected channels to 0. All these

corruptions depict domain shifts likely to be experienced in real world settings.

We repeat our experiment five times, each time using a different random set of selected chan-
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Figure 5.4: The top row shows channel weights learned by our model on the HHAR dataset for the
corresponding input data below. The overall weight distribution across the two domains is mostly
similar. The colored boxes highlight how weights learned for different classes help mask channels
with larger shifts between the domains, contributing to improved domain adaptation performance.

nels. The average macro F1 scores are shown in Figure 5.3. We can see that SSSS-TSA con-

sistently outperforms baselines such as DANN and SinkDiv. We selected these baselines as most

other baselines are variants of these. We observe that our baselines exhibit significant performance

degradation when only 2 channels are saturated. Our method achieves a macro F1 score of 0.922

while the best next baseline, SinkDiv Alignment, falls to 0.46. Even when 6 out of the 9 channels

are saturated, SSSS-TSA still attains an F1 score of 0.60. The third figure in Figure 5.3 shows

the results of the setting where randomly selected channels are dropped. Though our method per-

forms better than other baselines, the margin is much smaller for SSSS-TSA when six channels are

dropped. As this dataset was preprocessed and normalized, many channels in the source domain

would have values closer to 0, which would make it likely for some of these channels to be aligned

with dropped channels. Our method performs much better in the additive Gaussian setting as the

corrupted channels are less similar to the source channels. Overall, these results show the our

method often has the ability to screen and select important unaffected channels to improve time
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series domain adaptation performance.

5.4.4 Ablations

How important is it to align independent channels?

In our first ablation study, we evaluate the importance of aligning independent channels in our

method. Our approach, with independent channel alignment, achieves an F1 score of 0.816 on

the balanced WISDM dataset. When this alignment was removed (denoted as W/O Ind Align),

the performance significantly decreased to 0.639. This drop in performance supports our claim in

Subsection 5.3.5 on the importance of obtaining informative channel representations.

How important is the selection and screening module?

The second ablation focuses on the impact of the selection and screening module, specifically our

implementation of the attention mechanism. With the full model, including the attention mecha-

nism, the F1 score stood at 0.816. However, when the attention mechanism was removed (W/O

Attn), the score dropped to 0.688. This reduction highlights the significance of the selection and

screening module in our method. The attention mechanism enables the model to focus on the most

relevant and informative channels, thereby improving the both the quality of the merged repre-

sentation for classification in the source domain as well as the relevance of this representation in

the target domain, and consequently, improving the overall performance of the model. This result

demonstrates that the selective attention to channels is not just beneficial but is a crucial aspect of

achieving high accuracy in domain adaptation for time-series data.

Table 5.2: Ablations on WISDM-Bal

Our Method W/O Ind Align W/O Attn

0.816 0.639 0.688
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5.4.5 Visualizing the learned weights

Figure 5.4 provides a domain shift example from the HHAR dataset. The matrices on the top show

the channel weights learned by our model for both source and target domain data which is shown

below. Note that the overall distribution of the weight matrices across the classes is mostly similar

between the source and the target domains. We use source and domain data from three classes to

illustrate how these learned weights help improve domain adaptation.

The source and target weights for class 1, bounded in red boxes, select channel 3 as an im-

portant channel for the domain adaptation task. We can see in the input data for class 1 that these

chosen weights indeed help ignore the blue and the orange channels which encounter major shifts

between the source and the target domains. The selected green channel is most similar between the

two domains. We observe similar phenomena for classes 2 and 5. While not depicted in the figure,

it is also noteworthy that the weights learned for class 4 are quite different in the source and target

domains. Upon detailed inspection, each channel is quite informative, and in this case the precise

selection of channels is not particularly important for ensuring correct classification.

5.4.6 Visualizing the latent representations

Finally, we also examine the latent representations learned by our models and compare them to

a standard Sinkhorn alignment across all channels in Fig. Figure 5.5. In this example, we can

see that the representations formed by our method provide good overall alignment across all the

classes globally and also gives a good local alignment of each class. In contrast, for the Sinkhorn

baseline we see that some classes are often fractured and can be mapped to different parts of the

latent space.
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Figure 5.5: Umap embeddings for domain adaptation from subject 0 to subject 2 on the HHAR
dataset, where SSSS-TSA achieves an F1 score of 0.94 as compared to 0.69 for the Sinkhorn
baseline.

5.5 Conclusion

A key component of our method is its contrast with traditional encoders that indiscriminately pro-

cess all channels jointly. Such encoders often fail to exploit the inherent structure and importance

of different channels in time-series data, potentially leading to suboptimal performance, especially

in the presence of irrelevant or noisy channels. Our approach avoids this pitfall by focusing on the

most relevant channels, ensuring that the model is not only more efficient but also more effective

in capturing the nuanced relationships within the data. At the same time, our work provides new

insights into the significance of channel invariance in domain adaptation in time-series. This adds

to a growing body of work in time-series transformers and other channel-invariant encoders in time

series classification and forecasting. Here, we show how channel invariance can be a powerful tool

for alignment, especially in noisy channel settings and across different subsets of channels in the

training and testing sets.
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Of course our approach is not without limitations. One such limitation is the potential for over-

fitting in scenarios with extremely noisy or sparse datasets, where channel selection might become

biased towards non-representative features. Additionally, our current model uses different encoders

for each channel which restricts the application to new or unknown channels. Nevertheless, our

method has shown the advantages of selectively screening and aligning channels representations.

This can likely be used in conjunction with other recent methods that explore augmentations [108]

and label correction [93] for further improvements in the future.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

Different chapters in this thesis propose ways through which machine learning can help improve

change-point detection and ways in which machine learning can improve change-point detection.

In Chapter 2, we proposed a new method to improve sequential change-point detection for

detecting multiple change-points. In Chapter 3, we showed how similar dissimilar pairs can be

generated from detecting unsupervised change-points. These similar dissimilar pairs provide weak

supervision which can be used in conjunction with available supervised labels for semi-supervised

sequence classification. This method showed how tools from change-point detection can help

machine learning. In Chapter 4, we saw how similar dissimilar could be generated from provided

examples of change-points. These similar dissimilar pairs can be used to learn a distance metric

which can be leverage by entropic regularized Wasserstein distances for detecting change points

over sliding windows. This shows how tools from machine learning can help improve change-

point detection. Finally, in Chapter 5, we proposed a method that could allow time series machine

learning models to better adapt to distributional changes. Our method improves over existing

methods for unsupervised time series domain adaptation by ignoring channels for which there is a

large shift between the source and the target domains. This allows our method to ignore channels

with much larger shifts, helping our method to perform better.

The methods proposed in this thesis provide fertile grounds for future work.
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6.2 Future directions

6.2.1 Change-points for self-supervised learning

In Chapter 2, we saw how change-points can help semi-supervised classification of time series

data. There is also space for new methods that explore how change-point detection can improve

self-supervised learning for temporal data. Self-supervised learning methods for time series data

try to learn effective neural network representations through contrastive learning tasks [13]. These

methods take input sample sub-sequences and obtain similar views to these samples through ei-

ther augmenting the original input sub-sequences, or choosing sub-sequences that are temporally

proximal to the inputs. Temporally distant input sub-sequences are chosen as dissimilar views.

Contrastive learning tries to learn representations that are closer for similar pairs than dissimilar

pairs.

A critical challenge for self-supervised learning methods arises when dissimilar pairs are drawn

from the same underlying distribution. These methods can also falter when temporally proximal

sub-sequences chosen as similar views are in fact generated by different underlying distributions.

Change-point detection can help avoid these pitfalls; temporally proximal sub-sequences should

only be chosen as a similar sub-sequence only if there is no change-point between the original

sub-sequence and a candidate similar sub-sequence. Hypothesis tests and statistical distances are

at the heart of change-point detection methods. These tools can also be used to guide augmented

similar pairs; augmented sub-sequences should be chosen such that they are not statistically similar

to adjacent sub-sequences that are generated from different distributions. Such sub-sequences can

be identified through change-points.

6.2.2 Learning multiple metrics for change-point detection

In Chapter 3, we showed how metric learning can be used for improved change-point detection.

We also showed how we could learn sparse metrics which can help select and identify what chan-
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nels are important for detecting change-points. There can be cases where different types of metrics

are required for detecting different types of change-points. For example, when we used our met-

ric learning method for detecting switches between multiple types of sleep stages, we observed

that learning separate metrics for REM-nonREM changes and REM-awake changes led to better

performance [5].

This shows that there is space to explore how different metrics can be combined for effectively

detecting change-points. One potential scheme for this could involve learning to switch between

different metrics. Another potential approach could be to learn an ensemble of metrics and change-

point detection schemes, out of which the most confidently detected change-points could be kept.

6.2.3 Active learning for time series classification

Active learning is a popular strategy for reducing the amount of labeled data needed to train ma-

chine learning models. Recent active learning methods for deep learning select uncertain and

diverse set of samples for labeling [114, 115]. However, there is little work that explores how

active learning methods need to cater for time series data. Deep learning methods often divide

time series into smaller sub-sequences, and each of these sub-sequences is arranged into batches.

These batches are then fed into deep models to obtain a set of representations. As time series data

is temporally related, sample representation within an input batch are often correlated and peri-

odic. There is room to exploit this correlation to design active learning methods catered to time

series data. We have presented preliminary work in which we devise a strategy to select frequently

encountered periodic uncertain samples in time series data [116]. Though these preliminary active

learning methods are based on intuitive design principles. There is a need to devise principled

strategies for active learning that are grounded in theory.

Change-point detection can also be potentially helpful in devising labeling strategies. Change-

points can help identify homogeneous data segments that can help guide diverse sample selection

active learning methods. Homogeneous data segments also help provide class representative sam-
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ples which could further help with label efficiency.

6.2.4 Continual learning

Most machine-learning methods suffer from catastrophic forgetting when they are required to learn

new tasks. For example, when a model, that been trained on classifying cats from dogs, is required

to learn a new task of classifying cats from sharks, its performance on previously learned tasks

could suffer. Recently, the machine learning community has been focusing on continual learn-

ing methods which can continue to learn new tasks without impacting performance on previously

learned tasks [117]. Most continual learning methods involve learning tasks that evolve and change

with time. These methods often store representative samples from previous learning in a memory

bank that could be revisited when learning a new task [118]. Other methods constrain neural net-

works to learn task-specific parameters that lie in different orthogonal subspaces [119]. However

most continual learning methods have predefined knowledge about time instances at which tasks

change. In real-world settings, this information isn’t available and change-point detection methods

can be used to identify when learning tasks change [120, 121].

Change-point detection can provide additional information for learning tasks. There is room

to explore how change-point detection can identify how distributions, and consequently learning

tasks change between tasks. This can help better decide whether samples from new learning tasks

are related to previous learning tasks, helping develop continual learning methods that are more

memory efficient. Change-point detection can also help guide what parts of a network to update

when learning tasks change.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Proof of Lemma 1

A.1.1 Computing the inner expectation

For the expression in ( 2.20), the inner expectation is first simplified

Ext„θ0

”

r pxtq
ˇ

ˇ

ˇ
µ̂t, σ̂t

ı

“ Ext„θ0

„

exp

ˆ

δ0

ˆ

´
pxt ´ µ̂q2

2σ̂2
`

pxt ´ µ0q
2

2σ2
0

˙˙

ˇ

ˇ

ˇ
µ̂t, σ̂t

ȷ

“
σ12
σ0

exp

˜

´pµ0 ´ µ̂tq
2

2
σ̂2
t

δ0
` 2

σ2
0

1´δ0

¸

, (A.1)

where

σ2
12 “

σ̂2
t σ

2
0

δ0σ2
0 ` p1 ´ δ0qσ̂2

t

. (A.2)

Note: δ0 should be such that σ2
12 ą 0 in ( A.2).

A.1.2 Computing the outer expectation

Plugging in the results of the inner expectation from ( A.1) in ( 2.20):

Eθ0 rexppδ0s̃tqs “ exppδ0p´
1

2
´vqqExt`1..w„θ0

«

exp

ˆ
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ˆ

σ2
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2
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˜
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2

2
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t
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σ2
0

1´δ0

¸ff

.
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Expressing and simplifying the above equation yields:

Eθ0 rexppδ0s̃tqs “ exppδ0p´
1

2
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A.1.3 Asymptotic distribution of gpµ̂t, σ̂tq

Now the asymptotic distribution for the argument of the exponent (gpµ̂t, σ̂tq) within the expecta-

tion would be found (when sample mean and sample variance are estimated under the pre-change

distribution). This argument is defined as:
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1

2
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(A.4)

We now find the distribution of gpµ̂t, σ̂tq when samples samples xt..xt`w used to calculate µ̂t and

σ̂t are distributed by θ0. Decomposing gpµ̂t, σ̂tq into two terms:

apσ̂2
t q “
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.
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A.1.4 Asymptotic distribution of first term apσ̂2
t q

To find the asymptotic distribution of apσ̂2
t q, we first recall some results. The asymptotic distribu-

tion of sample variance is σ̂2
t :

σ̂2
t “

1

w

w
ÿ

1“1

pX i ´ µ̂tq
2,

σ̂2
t

σ2
0

“
1

w

w
ÿ

i“1

pX i ´ µ̂tq
2

σ2
0

looooomooooon

χ2
1 variables

.

(Note sample variance is divided by pw ´ 1q instead of w. Though as w ÝÑ 8, the the sample

variance is similar when divided by w or w ´ 1. We divide by w to use the tools of central limit

theorem which can be found below.) By the central limit theorem, as σ̂2
t

σ2
0

is a mean of sum of χ2
1

variables. These variables have a mean 1 and variance 2:

?
Np

σ̂2
t

σ2
0

´ 1q
d
ÝÑ Z „ N p0, 2q.

Or equivalently
?
Npσ̂2

t ´ σ2
0q

d
ÝÑ Z „ N p0, 2σ4

0q. (A.5)

An asymptotically normal estimator θ̂, for the parameter θ, is distributed through:

?
npθ̂ ´ θq

d
ÝÑ W „ N p0, σ2

q

For a function gpθ̂q, of an asymptotically normal estimator θ̂ of θ, the delta method states that:

?
npgpθ̂q ´ gpθqq

d
ÝÑ W ˚

„ N p0, g1
pθq

2σ2
q
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This result is however true only when g1pθq exists and is not 0. Since the sample variance, σ̂2
t , is

asymptotically normal (as shown in ( A.5)), we can try applying the delta method with apσ̂2
t q in

place of gpθq:
?
npapσ̂2

t q ´ apσ2
0qq

d
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„ N p0, 2pa1
pσ̂2

t qq
2σ4
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2
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δ0σ

2
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0

“ 0.

As a1pσ2
0q “ 0, the delta method cannot be used. In such a case, the second order delta method

can be used if a2pσ2
0q ‰ 0 .

A.1.5 Second order delta method

For an asymptotically normal estimator θ̂ for the parameter θ, i.e.,

?
npθ̂ ´ θq

d
ÝÑ W „ N p0, σ2

q,

the second order delta method [122] states that if there is a function g on these estimates θ̂, and

both gpθ̂q and g2pθ0q exist and are non 0, then

npgpθ̂q ´ gpθ0qq
d
ÝÑ W „ σ2

0

g2pσ2
0q

2
χ2
1.

Since the sample variance, σ̂2
t , is asymptotically normal (as shown in ( A.5)), we can try applying

the second order delta method with apσ̂2
t q in place of gpθq

npapσ̂2
t q ´ apσ2

0qq
d
ÝÑ W „ σ4

0a
2
pσ2

0qχ2
1. (A.6)
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Finding the double derivative of apσ̂2
t q with respect to σ̂2

t
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Plugging this result in ( A.6), we have
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Manipulating the second term:
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Recall that the distribution of the sample mean and the sample variance are given by:
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Also,
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Using these results in ( A.8) yields
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As w ÝÑ 8, by law of large numbers χ2
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1, then when w ÝÑ 8,
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A.1.7 Combining the two terms

Note that
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A chi square variable of v degrees of freedom can be written as a gamma variable, with shape

parameter v{2, and scale parameter 2. Also if X „ Gammapa, bq, then k.X „ Gammapa, k.bq.

Thus the asymptotic distribution of gpµ̂t, σ̂
2
t q can be written as:

gpµ̂t, σ̂
2
t q

d
ÝÑ X `

δ0
2

(where X „ Gammapapshapeq “ 1, bpscaleq “
δ20
w

qq. (A.12)
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A.1.8 Finding the equivalence factor δ0

The results from ( A.12) can be used within ( A.3) which can be written as:

Eθ0 rexppδ0s̃tqs “ exppδ0p´
1

2
´ vqqEX„Gammap1{2,2δ20{nq

„

exp

ˆ

X `
δ0
2

˙ȷ

.

Using this result to solve for δ0 in the statement of Lemma 1
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“ 1. (A.13)

The moment generating function of the gamma distribution is:

EX„Gammapa,bq rexp ptXqs “ p1 ´ tbq´a.

Using the moment generating function results in

exp p´δ0vq

ˆ

1 ´
δ20
n

˙´1

“ 1

δ0v ` logp1 ´
δ20
n

q “ 0

v “
´ logp1 ´

δ20
n

q

δ0
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Technical details on training neural networks

B.1.1 Preprocessing

Inputs to all the networks are scaled to be between 0 and 1.

B.1.2 Network architecture and training details

The neural network fθ used to learn representations from change points consists of three temporal

blocks, where each of the blocks consists of 100 channels. Here a temporal block is defined as

in [55] where each temporal block consists of two convolution layers with the same filter dila-

tion. Each convolution layer is followed by weight normalization which is followed by a RELU

activation and a dropout layer of 0.2.

For each successive temporal block, the filter was dilated by a factor of 2. The number of

epochs needed to minimize training loss for fθ was reduced by multiplying a constant (temperature

[123]) to the embedding provided to the final softmax layer. Details for these parameters can be

found in Table Table B.2. The first column refers to the different filters sizes (without dilation)

used for each experiment. The second column lists the ρ parameter for the hinge loss while the

third parameter lists the temperature values used.

2000 epochs were provided to train fθ through pairwise change points. The ADAM optimizer

with a learning rate of 0.0001 was used for all experiments to train fθ.

The feedforward fully connected network fψ was trained using a learning rate of 0.001 through

the ADAM optimizer and had two hidden layers of sizes 400 and 100 respectively. A RELU

activation is used after each of these hidden layers. 400 epochs were provided to train the feed
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Table B.1: Parameters for training fθ

Experiment Filter size Hinge param ρ Temp
Mean var 5 4 5

Mackay-Glass 10 8 10
HCI 30 8 5

WISDM 10 4 10

forward network.

For both the autoencoder and the supervised baselines, 1000 epochs were provided for training

as the loss (for both validation and training, the loss became constant at the 700th iteration and was

constant until the 1000th epoch.)

Each of the reported experiments was repeated 5 times, with mean and deviation (difference

from the largest deviation from the mean) reported. The seed for functions based on randomness

was fixed to a value 5.

B.2 Detecting change-points

Change points are also detected on sequences that are scaled between 0 and 1. This is not necessary

but makes it convenient to get scaled similar/dissimilar pairs for the neural network fθ directly from

the sequence on which change points are detected.

An example of detecting change points on the Mackay-Glass sequence can be seen in Figure

Figure B.1. This is a short sequence consisting of about 15 segments which can be used to set pa-

rameters needed for detecting change points. The first subplot shows the Mackay-Glass sequence.

The second subplot shows the values of the MMD function as well as the detected changes while

the third subplot shows the labels corresponding to different segments within the sequence. Note

the mountain/hill like features for the MMD statistic in the second subplot. These hills arise be-

cause the MMD function starts increasing when the future window Xf starts overlapping with the

segment belonging to the next class in the sequence. The peak value within this hill corresponds

to the change point. The MMD function starts decreasing when the previous window Xp starts
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Figure B.1: Detected change points on Mackay-Glass sequence

overlapping with the sequence class corresponding to Xf

The peak function within the scipy [124] python package can be applied on change statistics

mi to obtain change points. The peak function is used with two options. One is the ‘peak height’

which is equivalent to the change detection threshold τ . The second argument is distance which

specifies the minimum distance between detected change points.

The parameters used for detecting change points are listed below. τ is the detection threshold,

w is the size of the windows for Xf and Xp and distance is the minimum distance between change

points provided to the peak function.

Table B.2: Parameters for detecting change points

Experiment τ w distance
Mean var 3 100 100

Mackay-Glass 0.025 800 800
HCI 0.18 600 600

WISDM 0.025 200 200
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 Additional Experiment Details

For all experiments, a total of 2000 iterations were used and the model with best validation loss was

saved. Table Table C.2 shows the projection dimension , sliding window size, triplet margins and

regularization parameter γ used for all datasets. The triplet margin τ and regularization parameter

γ were set through validation held out data.

For baselines that involved two-sample tests (such as M-Stats, KLCPD, SinkDiv), the same

window sizes were used. For TIRE different window sizes were used till the best performance was

attained.

For time efficiency, sliding windows were used to obtain batched batched two-sample tests.

two-sample tests using Sinkhorn divergence libraries for Pytorch were conducted on these batches.

For the Sleep stage dataset, the true change points between REM and non-REM sleep stages

are often not labeled perfectly (There might not be any prominent change at a true labeled change

point for very short window sizes). For these reasons, when learning features through both sHSIC

and SinkDivLM, we select windows on the opposite side of change points with a buffer of size 10.

This buffer is not needed when detecting change points over sliding windows

In contrast to other methods, we do not post-process or filter score statistics before computing

F1 and AUC scores [61, 63]. The AUC scores are obtained by first computing the receiver operator

curves (ROC) curves, and then calculating the area under these curves. Figure Figure C.1 shows

ROC curves for the Beedance and HASC sequences shown in figure Figure 4.4. The AUC for

all sequences within a dataset were averaged and provided in table Table 5.1. For AUC scores,

we do not use a detection margin (where a change is correctly detected if it is within a certain
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Table C.1: F1 scores. Detection margins used for computing F1 scores

Dataset Detection Margin KLCPD M-stats HSIC TSCP TIRET TIREF SinkDiv SinkDivLM

Beedance 15 0.805 0.741 0.796 0.541 0.693 0.744 0.773 0.853
HASC -2011 200 0.692 0.651 0.643 0.632 0.712 0.701 0.815 0.824
Yahoo 25 0.580 0.271 - 0.571 0.546 0.531 0.645 0.675
GMM 10 0.486 0.664 0.423 0.313 0.318 0.329 0.476 0.985
SwchFreq 200 0.951 0.759 0.561 0.431 0.727 0.732 0.759 0.848

Table C.2: Parameter settings for experiments

Dataset Proj. dim Win size τ γ

GMM switch 5 10 1.0 0.1
Freq switch 50 200 2.0 0.1
Freq switch w slope 50 100 2.0 0.1
Beedance 3 15 0.1 0.01
HASC 3 200 1 1.0
Yahoo 5 2 0.5 0.1
ECG 2 3 1.0 0.0001
Sleep stage 42 15 0.1 1

margin of the true change point). However, a detection margin is used for obtaining F1 scores.

The detection margin, along with the threshold τ in table Table C.2, is used to get true positives,

false positives and false negatives. These can then be used to compute Precision and Recall scores,

with Precision “ True Positive
True Positive`False Positive , and Recall “ True Positive

True Positive`True Negative . F1 score can then be

computed as F1 “
2pPrecisionˆRecallq

Precision`Recall .These F1 scores are calculated in the same way as other works

in literature [61]. These detection margins are provided in table Table C.1. This table also lists

additional F1 scores for recent work using contrastive representations for change point detection

[64]. The available implementation for this method computes change point metrics on partitioned

windows, which makes AUC score comparison infeasible with methods presented in the main

paper, whose values for AUC are computed in a point by point manner (the original authors of [64]

didn’t report AUC numbers).
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Figure C.1: ROC curves for Beedance and HASC sequences.

C.2 Proof of Proposition 1

Starting with the definition of Sinkhorn divergence

|Sγpα, βq ´ Sγpα̂n, β̂nq| “ |Ef̄X,Yγ pu˚, v˚
q ´

1

n

n
ÿ

i“1

f̄Xi,Yi
γ pu, vq|, (C.1)

where

f̄X,Yγ pu, vq “ fX,Yγ pu, vq ´ 0.5fX,Xγ pu, vq ´ 0.5fY,Yγ pu, vq, (C.2)

and where fγpX, Y qpu, vq is the dual formulation of the entropy regularized Wasserstein distance.

f pX,Y q
γ pu, vq “ upXq ` vpY q ´ γ exp

ˆ

upXq ` vpY q ´ cpX, Y q

γ

˙

` γ (C.3)

Here u and v are the dual potentials, that are the Lagrange multipliers for the constraints in the

primal formulation. X and Y are the mass locations and cpX, Y q is the cost between mass locations

X and Y .

The dual/Sinkhorn potentials u and v lie uniformly in the ball of Sobolov space with radius

λ - represented by pHs
λq, where the radius λ is of the order p1 ` 1

γs´1 q (Theorem 2 in [83]). The
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Sobolov space , with s “ d{2 ` 1 is a reproducing kernel hilbert space (RKHS). Therefore the

Sinkhorn potentials lie in an RKHS with a radius λ that is of the order p1 ` 1
γd{2 q.

We can apply results similar to those given in Lemma 3 in [83]. This leads to

|Sγpα, βq ´ Sγpα̂n, β̂nq| “ |Ef̄X,Yγ pu˚, v˚
q ´

1

n

n
ÿ

i“1

f̄Xi,Yi
γ pu, vq|

ď 3 sup
pu,vqPpHs

λq

|Ef̄X,Yγ pu, vq ´
1

n

n
ÿ

i“1

f̄Xi,Yi
γ pu, vq|.

Expanding the Sinkhorn divergence from ( C.2),

E|Ef̄X,Yγ pu, vq ´
1

n

n
ÿ

i“1

f̄Xi,Yi
γ pu, vq| ď |EfX,Yγ pu, vq ´

1

n

n
ÿ

i“1

fXi,Yi
γ pu, vq|

` 0.5|EfX,Xγ pu, vq ´
1

n

n
ÿ

i“1

fXi,Xi
γ pu, vq|

` 0.5|EfY,Yγ pu, vq ´
1

n

n
ÿ

i“1

fYi,Yiγ pu, vq|

Using results from Theorem 3 and Proposition 2 in [83], each of the absolute difference term

on the right is bounded by 6BλK?
n

. Using Proposition 2 in [83] , this leads to

E|Sγpα,βq ´ Sγpα̂n, β̂nq| ď
12BλK

?
n

, (C.4)

where n is the number of samples used to estimate α̂. B is Lipschitz constant of the function fγ ,

K is the maximum value taken by the kernel associated with the dual potentials and λ is the radius

of the RKHS ball and is Op1 ` 1
γd{2 q.

Now we can apply McDiarmid’s inequality on the function

fpx1, ..., xnq “ |Sγpα,βq ´ Sγpα̂n, β̂nq|. (C.5)

The McDiarmid’s inequality states that if X1, ..., Xn are independent random variables, and
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px1, x2, ..., xnq and px̂1, x̂2, ..., x̂nq differ only at the ith index (xj “ x̂j for all j ‰ i)

|fpx1, ..., xnq ´ fpx̂1, ..., x̂nq| ď ci,

then

PrpfpX1, ..., Xnq ´ EppfpX1, ..., Xnq ě tq ď expp
´2t2

řn
i“1 c

2
i

q.

In our case the function fpX1, ..., Xnq “ |Ef̄X,Yγ pu, vq´ 1
n

řn
i“1 f̄

Xi,Yi
γ pu, vq|. With fX,Yγ pu, vq ď

C, changing one of the variables in fpX1, ..., Xnq changes the value of the function by at most 4C
n

.

Thus ci “ 4C
n

, as compared to 2C
n

for regularized Wasserstein distance in [83].Thus with probability

1 ´ δ,

fpX1, ..., Xnq ď EpfpX1, ..., Xnqq ` C

d

8 logp1
δ
q

n

Substituting ( C.5), followed by ( C.4) in this expression leads to with probability 1-δ

|Sγpα,βq ´ Sγpα̂n, β̂nq| ď
12BλK

?
n

` C

d

8 logp1
δ
q

n
q (C.6)

where n is the number of samples used to estimate α̂ and β̂, λ is the radius of the RKHS ball in

which the dual potentials u, v lie and is Op1 ` 1
γd{2 q. C “ κ ` γ exppκ{γq, κ “ 2L|X | ` }c}8 ,

L is the Lipschitz constant of the cost/distance c between mass locations, and |X | represents the

diameter of the of the space of mass locations X P |X |. B is the Lipschitz constant of fγ and is

upper bounded by ď 1 ` expp2κ{γq [83].

C.3 Obtaining Transport Plans for Sinkhorn distances

The transport plan P for the regularized Wasserstein distances (or Sinkhorn distances), can be

obtained using the Sinkhorn iteration [71].
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C.3.1 Dual formulation

We can incorporate the constraints into a Lagrangian dual function

max
f ,g

min
P
LpP, f ,gq “ max

f ,g
min
P

xC,Py ´ γHpPq (C.7)

` xf , a ´ P1my ` xg,b ´ PT
1ny

“ max
f ,g

xf , ay ` xg,by ` min
P

xC ´ f1m ´ g1m,Py ´ γHpPq

“ max
f ,g

xf , ay ` xg,by ` min
P

xC ´ f1m ´ g1m,Py (C.8)

´ γxP, logP ´ 1nˆmy (C.9)

By solving BLpP,f ,gq

BP
“ 0, we can obtain P such that:

Pi,j “ efi{γ e´Ci,j{γ
loomoon

Kernel

egj{γ

Substituting P in ( C.9), we can obtain after simplification the equivalent dual problem

max
f ,g

xf , ay ` xg,by ´ γxef{γ, e´C{γeg{γ.y (C.10)

For non-discrete distributions, a more generalized dual formulation can be seen below

Wp
γ pa,bq “ sup

pfpxqPCpX q,gpyqPCpYqq

ż

X
fpxqdαpxq

`

ż

Y
gpyqdβpyq ´ γ

ż

X ,Y
e

fpxq`gpyq´cpx,yqp

γ dαpxqdβpyq

“ sup
pfpxqPCpX q,gpyqPCpYqq

EαβrzX,Yϵ pf, gqs

where zx,yϵ pf, gq “ fpxq ` gpyq ´ γe
fpxq`gpyq´cpx,yqp

γ .
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C.3.2 Sinkhorn Algorithm

We can rewrite this as in vectors u “ efi{γ,v “ egi{γ and K “ e´Ci,j{γ as:

P “ diagpuqKdiagpvq (C.11)

Also from constraints:

diagpuqKdiagpvq1m “ a and pdiagpuqKdiagpvqq
T
1n “ b.

u d Kv “ a. and v d KTu “ b

An alternating update scheme can be used to update the dual potentials until convergence

ul`1
“

a

Kvl
and vl`1

“
b

KTul

Matrix multiplications for these iterates can be parallelized through passing them as tensors on

GPUs through libraries such as Pytorch. This allows a large number of two sample tests to be si-

multaneously computed, which speeds up gradient computation for learning L. We use the Python

Optimal Transport library which leverages Pytorch for computing Sinkhorn distances [125]. The

Sinkhorn iterations are computed with a tolerance of 1e-3. For scenarios where the Sinkhorn dis-

tance time complexity Opn2q might be prohibitive to use for detecting repeated changes over slid-

ing windows in a sequence, there is room to speed up computations by leveraging sliced Wasser-

stein distances on data that is transformed by the learned metric L. This can be explored in the

future.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

D.1 Hyper-parameters and other training details

For all of our runs, we used a Sinkhorn regularization parameter, γ “ 1e ´ 3.

Learning rate for all experiments was also set to 1e ´ 3. Our loss function doesn’t take a constant

sum of the supervised classification loss and Sinkhorn alignment values. The ratio of these two

terms in the loss function wasn’t tuned for any experiment. We were mindful of how our experi-

ments settings should reflect real world scenarios where true labels from the target domain aren’t

available. All datasets were trained for 300 epochs before reporting numbers in table Table 5.1 For

the HHAR and WISDM datasets, the temperature parameter τ for the softmax non linearity was

set to 3. For HHAR this was set to 10 (as a larger number of channels were involved).

For the remaining baselines, we used the already set parameters for these different datasets

in the Adatime benchmarking suite. We used Raincoat’s adaptation of this benchmarking suite

https://github.com/mims-harvard/Raincoat to run both raincoat and other baselines.

All experiments were performed on a Single NVIDIA Quadro RTX 5000.

D.2 Additional results

Table Table D.1 shows macro F1 scores when target domain labels in the validation hold out set

were used to report evaluation numbers. The model paramaters corresponding to the best macro

F1 performance on the target domain holdout validation set were saved. The performance of these

saved models on test sets was then reported. We believe this method doesn’t accurately reflect

real world performance, but report numbers here as this is a common evaluation scheme used in

literature.
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Table D.1: Mean macro F1 scores over 5 runs for different domain adaptation methods

Model Simulations UCIHAR HHAR WISDM WISDM-Bal PXECG

Supervised Src 0.262 0.836 0.66 0.504 0.521 0.366

DANN 0.7 0.891 0.701 0.681 0.626 0.361

AdvSKM 0.712 0.88 0.671 0.616 0.665 0.389

CoDATS 0.531 0.907 0.744 0.685 0.816 0.366

CDAN 0.812 0.647 0.731 0.632 0.742 0.363

DeepCoral 0.843 0.892 0.697 0.621 0.701 0.346

CLUDA 0.802 0.857 0.661 0.491 0.760 0.325

SinkDiv 0.713 0.876 0.720 0.602 0.648 0.376

Raincoat 0.713 0.889 0.714 0.519 0.746 0.354

SSSS-TSA 0.98 0.915 0.787 0.677 0.857 0.422

It can be seen that there is a big difference in methods that employ adversarial learning (such

as DANN, CoDATS etc.) between numbers in Table Table D.1 and Table 5.1. Methods employing

Sinkhorn Distance have a smaller margin difference between these two approaches. Adversarial

methods can be very unstable, and the best target domain validation scores often do not correspond

to higher source domain classification scores. Source domain F1 scores on validation holdout sets

are another way to stop model training and report domain adaptation methods on target domain test

sets, but source classification scores reach their best values very early on in the training regime,

way before target domain performance improves to their best values.
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For HHAR and UCIHAR datasets, we use the same domain adaptation scenarios used in [93].

For WISDM we use a different set of domain adaptation scenarios as the raincoat paper addresses

the universal domain shift problem, where some source domain calsses are not present in the target

domain. As that is not the focus of our paper, we use a different set of domain adaptation scenarios

for the WISDM dataset.

D.2.1 WISM domain adaptation scenarios

Table D.2: WISDM scenario test scores at end of training. Mean macro F1 scores for each domain
adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.5545 0.5668 0.6142 0.6144 0.4954 0.4862 0.7039 0.2414 0.6116

12 to 19 0.3668 0.2901 0.3380 0.2427 0.2758 0.2715 0.3153 0.2636 0.4451

30 to 20 0.6525 0.6540 0.6630 0.7912 0.7156 0.3591 0.4941 0.4506 0.7961

2 to 32 0.5897 0.4067 0.6914 0.5667 0.5004 0.3940 0.5003 0.3392 0.6345

7 to 30 0.7673 0.7471 0.8101 0.6666 0.7329 0.5073 0.6329 0.5073 0.8932

12 to 7 0.5132 0.5467 0.5200 0.5674 0.4905 0.3755 0.6804 0.4070 0.4785

18 to 20 0.5604 0.5212 0.5855 0.6886 0.5812 0.4400 0.6477 0.3912 0.6258

19 to 30 0.5627 0.3386 0.5657 0.3860 0.4865 0.6343 0.3454 0.4131 0.5105

4 to 19 0.1971 0.3404 0.3725 0.2932 0.3196 0.4181 0.6344 0.3119 0.6313

26 to 2 0.6626 0.6625 0.6492 0.6672 0.5730 0.3222 0.6162 0.2797 0.7321
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Table D.3: WISDM scenario test scores when validation target domain labels to stop early. Mean
macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.6088 0.6303 0.6227 0.6980 0.6112 0.4862 0.6701 0.5716 0.7303

12 to 19 0.3661 0.3884 0.3306 0.3687 0.3247 0.2715 0.3800 0.2904 0.4479

30 to 20 0.7447 0.8452 0.7678 0.7959 0.8117 0.3591 0.5757 0.5818 0.8220

2 to 32 0.6810 0.7153 0.7160 0.7392 0.6914 0.3940 0.5660 0.6019 0.6295

7 to 30 0.7801 0.8041 0.8326 0.8528 0.7985 0.5073 0.6907 0.7195 0.9406

12 to 7 0.5335 0.7322 0.5245 0.7215 0.6271 0.3755 0.6925 0.5385 0.5154

18 to 20 0.6014 0.7349 0.6403 0.7316 0.6879 0.4400 0.7145 0.5469 0.6621

19 to 30 0.6847 0.6636 0.5898 0.5889 0.6716 0.6343 0.5201 0.5136 0.5792

4 to 19 0.3741 0.5121 0.4780 0.4719 0.4212 0.4181 0.5868 0.4243 0.6326

26 to 2 0.6716 0.7616 0.6627 0.8833 0.6743 0.3222 0.6311 0.4040 0.8181

D.2.2 WISDM-Balanced

Table D.4: WISDM-balance scenario test scores at end of training. Mean macro F1 scores for each
domain adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.5667 0.6495 0.6239 0.6067 0.5970 0.6230 0.6638 0.3382 0.8855

12 to 19 0.3898 0.6230 0.4848 0.8289 0.6673 0.5816 0.6306 0.5004 0.8333

30 to 20 0.5412 0.7388 0.6059 0.7048 0.7660 0.7410 0.6126 0.4495 0.7644

2 to 32 0.6133 0.7250 0.7004 0.6928 0.6007 0.6538 0.5506 0.4664 0.7205

7 to 30 0.7890 0.7526 0.7600 0.6975 0.7524 0.9223 0.6591 0.3515 0.9667

12 to 7 0.6028 0.7442 0.5418 0.5971 0.6109 0.7500 0.7541 0.5294 0.8966

18 to 20 0.5671 0.4784 0.6178 0.5805 0.4810 0.6663 0.7239 0.6197 0.5801

19 to 30 0.5572 0.6440 0.6824 0.5357 0.7061 0.6586 0.6913 0.3526 0.7218

4 to 19 0.1911 0.7800 0.4673 0.7174 0.6834 0.8079 0.7589 0.5225 0.9284

26 to 2 0.6456 0.6997 0.6281 0.6936 0.7472 0.5836 0.5529 0.3287 0.8598
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Table D.5: WISDM-balance scenario test scores when validation target domain labels used to stop
early. Mean macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.6094 0.6610 0.6204 0.7028 0.6752 0.6783 0.6586 0.7077 0.8904

12 to 19 0.3969 0.7043 0.4847 0.9336 0.8137 0.6398 0.6889 0.6532 0.8765

30 to 20 0.6752 0.8003 0.7157 0.8089 0.8301 0.7684 0.6623 0.7803 0.7048

2 to 32 0.6761 0.8401 0.7600 0.8243 0.7414 0.7519 0.6099 0.7106 0.7316

7 to 30 0.7767 0.7578 0.7628 0.7576 0.7346 0.8588 0.7167 0.7903 0.9830

12 to 7 0.6375 0.7893 0.6232 0.8190 0.6694 0.8709 0.7723 0.8969 0.9695

18 to 20 0.6402 0.6508 0.6591 0.7890 0.6001 0.7542 0.7116 0.7820 0.7508

19 to 30 0.7005 0.7950 0.7336 0.8048 0.7834 0.7585 0.7170 0.8508 0.8642

4 to 19 0.5702 0.8186 0.6876 0.8425 0.7823 0.8247 0.7878 0.5886 0.9529

26 to 2 0.6621 0.7455 0.6111 0.8788 0.7979 0.6944 0.5934 0.6992 0.8528

D.2.3 HHAR domain adaptation scenarions

Table D.6: HHAR scenario test scores at end of training. Mean macro F1 scores for each domain
adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

0 to 2 0.6103 0.6879 0.6611 0.6550 0.7097 0.6975 0.6654 0.7291 0.8423

1 to 6 0.8185 0.9482 0.8703 0.9296 0.9402 0.8505 0.9193 0.9010 0.9157

2 to 4 0.3948 0.6147 0.4327 0.5501 0.6009 0.6029 0.6763 0.3900 0.6581

4 to 0 0.2688 0.2749 0.2585 0.3431 0.3104 0.3241 0.3487 0.2324 0.4575

4 to 5 0.8245 0.9564 0.9283 0.9633 0.9558 0.8973 0.8914 0.9069 0.9406

5 to 1 0.9011 0.9789 0.9000 0.9695 0.9557 0.9335 0.9457 0.8873 0.9794

5 to 2 0.2905 0.3671 0.3435 0.3112 0.4011 0.4939 0.4076 0.2422 0.5563

7 to 2 0.3604 0.4264 0.3817 0.2890 0.4376 0.4490 0.4351 0.3776 0.5978

7 to 5 0.6025 0.8752 0.6194 0.8606 0.6830 0.6075 0.7413 0.7186 0.7142

8 to 4 0.7085 0.9727 0.7661 0.9679 0.9714 0.5585 0.7858 0.6518 0.6459
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Table D.7: HHAR scenario test scores when validation target domain labels used to stop early.
Mean macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

0 to 2 0.6971 0.7520 0.7107 0.7207 0.7774 0.7118 0.7285 0.7436 0.8923

1 to 6 0.9022 0.9541 0.8986 0.9414 0.9475 0.8739 0.9372 0.9198 0.9344

2 to 4 0.4846 0.6613 0.4835 0.6119 0.6264 0.6288 0.8093 0.5962 0.7558

4 to 0 0.3090 0.4000 0.3181 0.4166 0.3723 0.3991 0.3683 0.4408 0.5506

4 to 5 0.8819 0.9709 0.9445 0.9747 0.9551 0.9064 0.9254 0.9182 0.9382

5 to 1 0.9248 0.9776 0.9224 0.9766 0.9599 0.9176 0.9470 0.9472 0.9771

5 to 2 0.3699 0.5157 0.3874 0.4631 0.4503 0.5153 0.4521 0.4527 0.6217

7 to 2 0.4074 0.5232 0.4078 0.4525 0.4668 0.4744 0.4378 0.5047 0.6245

7 to 5 0.7230 0.9008 0.7561 0.9077 0.7767 0.6334 0.7688 0.9253 0.8084

8 to 4 0.8425 0.9739 0.8777 0.9757 0.9783 0.5552 0.8279 0.6933 0.7706

D.2.4 UCIHAR domain adaptation scenarions

Table D.8: UCIHAR scenario test scores at end of training. Mean macro F1 scores for each domain
adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

2 to 11 0.5842 0.9653 0.9967 0.9509 0.8339 0.9401 0.9732 0.9741 0.9768

6 to 23 0.7358 0.9076 0.8739 0.9722 0.9465 0.8969 0.8984 0.8812 0.9212

7 to 13 0.7897 0.8758 0.8469 0.8678 0.9025 0.8497 0.9264 0.9123 0.9407

9 to 18 0.3897 0.5603 0.5786 0.6434 0.5345 0.5156 0.5837 0.5921 0.6938

12 to 16 0.4853 0.4907 0.6208 0.5418 0.5660 0.6082 0.6662 0.6733 0.8155

13 to 19 0.9155 0.7635 0.9297 0.8883 0.9426 0.9336 0.9685 0.9540 0.9283

18 to 21 0.9947 0.9531 0.9967 0.9939 1.0000 0.9175 0.9966 0.9990 1.0000

20 to 6 0.9694 0.9446 1.0000 0.9552 0.8159 0.8321 1.0000 0.9578 0.9463

23 to 13 0.7981 0.7455 0.7867 0.7464 0.8379 0.7543 0.8003 0.8732 0.8228

24 to 12 0.8380 0.9810 0.8535 0.9967 0.9810 0.9944 0.9555 0.9532 0.9669
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Table D.9: UCIHAR scenario test scores when validation target domain labels used to stop early.
Mean macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

2 to 11 0.7290 0.9967 0.9967 0.9935 0.9935 0.9843 1.0000 1.0000 1.0000

6 to 23 0.7326 0.9772 0.8800 0.9793 0.9948 0.9252 0.9219 0.9224 0.9742

7 to 13 0.8753 0.9232 0.8524 0.8748 0.9556 0.8377 0.8994 0.8610 0.9209

9 to 18 0.7231 0.6750 0.6695 0.7402 0.7152 0.5045 0.5634 0.6544 0.6521

12 to 16 0.6534 0.5922 0.6351 0.6743 0.6624 0.6131 0.6560 0.6754 0.8372

13 to 19 0.9468 0.9758 0.9514 0.9921 0.9654 0.9212 0.9740 0.9547 0.9681

18 to 21 0.9978 1.0000 0.9967 0.9973 1.0000 0.9434 1.0000 0.9957 1.0000

20 to 6 0.9755 0.9911 1.0000 0.9782 0.9016 0.9956 1.0000 0.9578 0.9622

23 to 13 0.7642 0.7928 0.8283 0.7698 0.8945 0.8534 0.8491 0.8867 0.8531

24 to 12 0.9396 0.9941 0.9706 0.9967 0.9810 0.9943 0.9785 0.9645 0.9844

D.3 Datasets

HHAR: https://archive.ics.uci.edu/dataset/344/heterogeneity+activity+recognition

WISDM: https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+

biometrics+dataset

UCIHAR: https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones

PXECG: https://physionet.org/content/ptb-xl/1.0.3/
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