#### Detecting and Leveraging Changes in Temporal Data

#### Nauman Ahad

#### Ph.D. Defense School of Electrical and Computer Engineering Georgia Institute of Technology



### Time Series Data is All Around Us



# **Detecting Changes in Temporal Data**

Many applications require detecting changes in temporal data





• Need to identify these changes *quickly* 







Modern applications require identifying changes which are **challenging** to detect

- Changes between *complicated*, non-parametric distributions
- *Multivariate* signals Some changes important, some not..
- Detecting *multiple* changes





# **Classifying Temporal Data**

Many applications require classifying time series data into different classes

For example:



Machine learning models trained through supervision to classify sub-sequences

# Challenges in Learning Supervised ML Models

Developing machine learning for the real-world is **challenging** 

- Training data can be *limited*
- Supervised models can perform poorly in real-world settings under *distribution shifts*

## Supervised Models in the Real World



Supervised classifier *fails* as data distribution *changes* 

# Common Theme

Common theme between change detection and machine learning classification?



- Machine learning classification models:
  - Learn separability between different categories of interest through examples
- Change points:
  - *Identify* where data distributions become different

A common theme: Separability between data distributions

Leverage this common theme to see how machine learning and change detection can benefit each other?

### **Overview of Thesis**



**Proposes new methods that show how:** 

Change detection can help machine learning
 Machine learning can help improve change detection

### Four Main Aims of Thesis

- 1. Multiple change point detection in streaming data settings
- 2. Using change detection for label efficient supervised learning
- 3. Using supervision tools from machine learning to improve change detection
- 4. Improving supervised models in the presence of distribution shifts



#### Improving Change Detection

#### Aim 1. Multiple change point detection in streaming data settings



#### **Background:** Identify *multiple* change points sequentially within streaming manner







1. Wheelchair activity tracker<sup>[1]</sup>

 Pressure sensor mat (beneath seat cushion )

### **Change Point Detection**



Testing at instance t for a change point before instance t

Null hypothesis: no-change

- All instances  $x_i$  i.i.d. ~  $f_{\theta_0} = \mathcal{N}(\mu_0, \sigma_0^2)$ 

Alternate hypothesis: change at  $n_c$ :

- Instances  $x_1$ . to  $x_{n_c-1} \sim f_{\theta_0} = \mathcal{N}(\mu_0, \sigma_0^2)$
- Instances  $x_{n_c}$  to  $x_t \sim f_{\theta_1} = \mathcal{N}(\mu_1, \sigma_1^2)$

Log likelihood ratio test for a change at  $n_c$ 

Take maximum of these ratios over all change point instances

Compare to a threshold *b* to detect change

$$\mathcal{L}(\mathcal{H}_0|X) = \prod_{i=1}^t f_{\theta_0}(x_i)$$

$$\mathcal{L}(\mathcal{H}_1|X) = \prod_{i=1}^{n_c-1} f_{\theta_0}(x_i) \prod_{i=n_c}^t f_{\theta_1}(x_i).$$

$$\ell_{n_c}^t = \sum_{i=n_c}^t \log \frac{f_{\theta_1}(x_i)}{f_{\theta_0}(x_i)}.$$

$$\ell^t = \max_{1 < n_c < t} \ell^t_{n_c}$$

 $\ell^t > b$ 

14

### CUSUM<sup>1</sup>

Post-change distribution  $\theta_1$  known

- Recursive formulation:

$$S_t = \left(S_{t-1} + \log \frac{f_{\theta_1}(x_t)}{f_{\theta_0}(x_t)}\right)^+,$$

where,

$$(S_{t-1})^+ = \max(0, S_{t-1})$$

Compare to threshold to detect change  $S_t > b$ 

Post-change distribution  $\theta_1$  unknown

- Use MLE to estimate post-change distribution
- Non recursive

$$\ell^{t} = \max_{1 < n_{c} < t} \max_{\substack{\theta_{t} \\ \theta_{t} \\ \ell_{i} = n_{c}}} \sum_{i=n_{c}}^{t} \log \frac{f_{\theta_{t}}(x_{i})}{f_{\theta_{0}}(x_{i})}$$

$$\underbrace{I_{t} > b}$$

- Compare to threshold to detect change

Once a change is detected, the corresponding post-change distribution is used as the pre-change distribution and the procedure is restarted to detect *multiple* change points.

#### Log Likelihood ratio is *asymmetrical*

- Example: Joint changes in mean and variance

#### Change from low variance to high variance



#### Change from high variance to low variance

17

### Asymmetric Change Statistic

#### In streaming settings, difficult to set detection threshold b





18

CUSUM, GLR are based on likelihood ratio methods and are quick to detect changes

These methods, however, are *asymmetrical* which makes it difficult to set a detection threshold a priori to detect *multiple* change points

**Objective**: Develop symmetrical sequential change detection and provide results that relate detection delay and false alarm rate

#### Data Adaptive Symmetrical CUSUM (DAS-CUSUM)

Estimate post-change  $\hat{\theta}_t$  using window of length w

$$S_{t} = (S_{t-1})^{+} + s_{t}$$

$$S_{t} = (S_{t-1})^{+} + \log \frac{f_{\hat{\theta}_{t}}(x_{i})}{f_{\theta_{0}}(x_{i})} + D_{KL}(f_{\theta_{0}}(x)||f_{\hat{\theta}_{t}}(x)|) - v$$

$$(y) = \int_{Y} \frac{1}{1 + 1} \int_$$



$$\mathbb{E}_{\theta_1}[s_t] = D_{KL}(\theta_1, \theta_0) + D_{KL}(\theta_0, \theta_1) - v$$

 $\mathbb{E}_{\theta_0}[s_t] = -v$ 

### EDD vs ARL

**Theorem 1**: For a given ARL ( $\gamma$ ), the expected detection delay (EDD) for a change from distribution  $x \sim \mathcal{N}(\theta_0)$  to  $x \sim \mathcal{N}(\theta_1)$ , which is unkown and estimated using a window of length w (as  $w \rightarrow \infty$ ), is given by:

EDD = 
$$\frac{\log \gamma + o(1)}{\delta_0 \left( D_{KL}(\theta_1, \theta_0) + D_{KL}(\theta_0, \theta_1) \right) + \log(1 - \frac{\delta_0^2}{w})} + w.$$

 $\gamma$ : ARL  $\theta_0$ : pre-change dist.  $\theta_1$ : post-change dist.  $D_{KL}$ : KL Divergence w: window length to estimate post-change dist.

CUSUM result<sup>1</sup> where post-change distribution known:  $EDD = \frac{\log \gamma + o(1)}{D_{KL}(\theta_1, \theta_0)}$ 

Symmetrical term in the denominator

### **Real-world Results**



### Aim Summary & Contributions

1. Proposed a symmetrical sequential change detection procedure

- 2. A symmetrical statistic makes it easier to set a threshold for detecting multiple changes
- 3. Provided theoretical & empirical results that relate detection delay with false alarms
- 4. Used change detection to solve a real-world problem where supervised classifiers can fail

#### **Publication**

N. Ahad, M. A. Davenport, and Y. Xie, "Data-adaptive symmetric CUSUM for sequential change detection", *Sequential Analysis*, 43 (1), pp. 1-27, 2024

#### Improving Machine Learning Models

#### Aim 2. Using change points for semi-supervised learning



# Semi-supervised Learning

- Obtaining labeled data is expensive
  - Difficult to recruit participants for providing controlled, labeled data
  - Difficult to annotate labels in large unstructured datasets
- Unlabeled data
  - Inexpensive and widely available

#### Can we utilize unlabeled data to improve classification performance?

Possible solution:

#### Semi-supervised learning:

Leveraging unlabeled data to complement labeled data for improved learning

# Semi-supervised Learning



#### Semi-sup methods perform better if data is well clustered!

**Objective**: Use unsupervised change detection to obtained clustered representations for improved semi-supervised sequence learning

#### **First Step**

- First run an unsupervised change detection procedure on time series
- Note: Any change point detection method can be used as long if it identifies changes correctly



# Obtain Similar/Dissimilar pairs

#### **Second Step**

Obtain similar dissimilar sequence pairs from detected change points



#### Learning Semi-supervised Network Representations

Pairs from true labels and pairs from change points used to learn neural network



# Train Classifier on Top of Representations

Train another classification network  $f_{\psi}$  to predict labels for learned representations  $f_{\theta}(X)$ , where X is the input



*Y*: True label

### Synthetic Experiments

Synthetic sequence that switches between different classes



### Synthetic Experiments



| F1 scores -<br>(Higher is better) | Model       | 20 labels           | 30 labels                       | 60 labels                       |
|-----------------------------------|-------------|---------------------|---------------------------------|---------------------------------|
|                                   | Supervised  | $0.55 \ {\pm} 0.07$ | $0.86\pm0.04$                   | $0.95\pm0.02$                   |
|                                   | Autoencoder | $0.73\pm0.04$       | $0.90\pm0.02$                   | $0.98\pm0.01$                   |
|                                   | SSL-CP      | $0.96\ {\pm}0.02$   | $0.98\pm0.01$                   | $0.99\pm0.01$                   |
|                                   | SSL-CP (ER) | $0.99\pm0.02$       | $\textbf{0.99}\pm\textbf{0.01}$ | $\textbf{0.99}\pm\textbf{0.01}$ |

Human activity recognition for fitness tracking:

- 3 axis accelerometer mounted on user's arm
- Users do 6 activities (Walk, run, stair up, stair down, stand, sit)

F1 scores (Higher is better)

| Method                          | F1 score                 |
|---------------------------------|--------------------------|
| Supervised                      | $0.45\pm0.04$            |
| Autoencoder                     | $0.54 \pm 0.02$          |
| SSL-CP (All users)              | $0.53\pm0.03$            |
| SSL-CP (Filtered users)         | $0.65\pm0.02$            |
| SSL-CP (True CPs, all users)    | $0.66\pm0.01$            |
| SSL-CP-ER (Filtered users)      | $0.65\pm0.01$            |
| SSL-CP-ER (True CPs, all users) | $\textbf{0.69} \pm 0.01$ |



# Aim Summary and Contributions

- Method that can use detected change points for learning semi-supervised neural network representations
- First method, that we know of, that proposes using unsupervised change-point detection for semi-supervised learning

#### **Publication**

N. Ahad and M. Davenport, "Semi-supervised Sequence Classification through Change Point Detection", *AAAI Conference on Artificial Intelligence*, 2021.

#### Improving Change Detection

#### Aim 3. Using supervision from available changes to improving change detection



### How to Use Available True Change Points ?

Many signals require us to *detect some kinds* of changes while *ignoring other kinds of* changes



Can we use true change information to improve change detection performance?
### **Comparing Two Distributions**

First, how to compare how dissimilar two sets of points are with no distributional assumptions?



One way: Entropic regularized Wasserstein distances (Also known Sinkhorn Divergence)



#### Detecting Change Points Through Sinkhorn Divergence

Sinkhorn Divergence (  $S_{\gamma}$ )

• For measuring the difference between two distributions



Detect change point at instances where Sinkhorn divergence greater than a specified threshold

### How to Use Supervision?

Three different distributions

We can learn a transformation *L* that projects the y dimension of all points onto *x* axis

**Supervised Information Requiring**  $S_{\gamma}(\alpha,\beta)$  $S_{\gamma}(\boldsymbol{\alpha}, \boldsymbol{\phi})$ should be large should be small  $\boldsymbol{y}$ 8  $\pmb{\beta} \in \mathbb{R}^2$  $\boldsymbol{\phi} \in \mathbb{R}^2$  $\boldsymbol{\alpha} \in \mathbb{R}^2$ 4 2 32 2 2 32 32 37 32 32 32 32 37 32 27 2 x4 8 x 2 x6 4 2 Lβ Lα Lφ x2 4 8 x 2 x2 6 4 4  $S_{\gamma}(L\alpha, L\beta)$  $S_{\gamma}(L\alpha, L\phi)$ Small! Large!

L meets the supervised requirement

## Supervision for Learning *L*?

Use Change Points to obtain supervision for learning L



### How to Use Available True Change Points ?

#### Learn L by minimizing triplet loss



Once L learned, use  $S_{L,\gamma}$  in two sample tests over sliding windows to detect change points



Detect change point whenever  $\mathcal{S}_{m{L},\gamma} > au$  (threshold)

### Learned Metric Improves Performance





Learned metric improves performance

#### Learned Metric Improves Performance



#### Area Under the ROC Curve (AUC) scores (Higher is better) Dim2 HASC (2011) Dim3 Model Swch GMM Swch Freq Bee Dance HASC (2016) Yahoo ECG HSIC 0.4930.4260.5430.6030.591-0.947 0.4370.4940.6050.7510.737M-stats 0.844 $TIRE_T$ 0.5010.5510.5390.6590.6430.8650.747 $TIRE_{F}$ 0.677 0.5560.7250.8710.9000.6470.712**KLCPD** 0.8020.7090.6320.6630.7420.9320.810SinkDiv 0.7780.4810.5560.7570.7170.9420.900**SinkDivLM** 0.9740.8430.6820.803 0.759 0.946 0.899

#### Our Method (SinkDivLM) does much better!

$$\min_{\boldsymbol{L}} \sum_{i \in \text{Trip pairs}} \left[ c - \left( \mathcal{S}_{\boldsymbol{L},\gamma}(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{d}}) - \mathcal{S}_{\boldsymbol{L},\gamma}\left(\boldsymbol{x}_{i},\boldsymbol{x}_{i_{s}}\right) \right) \right]^{+} + \lambda \|\boldsymbol{L}\|_{1}$$

L1 regularization leads to a sparse L

Sparse L can help interpretability!

Important channels in time series that are responsible for causing changes!

#### Neural Sleep Stage Dataset

- Electrode arrays implanted in mice hippocampus record neural firing data
- Spike sorted data and binned 42 neurons
- 12 hour annotated recordings where mice switch between REM, nREM and awake states
- Available true change points to:
  - 1. Improve state sleep state change detection
  - 2. Learn a sparse ground metric  $L^T L$  which helps interpret what neurons are responsible for changes



### Sparse Interpretable Metric

#### Sleep/Awake changes REM/nREM changes SinkDiv (No Learned Metric) Change statistic True REM/nREM change 0.8 True sleep/wake change 0.8 0.4 0.6 0.4 0.0 0.2 SinkDivLM (Combined Metric) 1.0 Change statistic True REM/nREM change Neuron 6 Neuron 3 True sleep/wake change 0.8 REM Awake Non REM Sleep 0.6 0.4 Neuron 15 Neuron 15 and the states of 0.2 0.0 575 610 645 50 100 Time(s) 150 200 660 695 730 Time(s) Time(s) (C) (B) (A) SinkDiv SinkDivLM Trained on sleep/wake Sleep/wake 0.850.58REM/nREM/wake 0.790.72Trained on REM/nREM REM/nREM 0.920.95REM/nREM/wake 0.790.82**Combined sleep metrics** REM/nREM/wake 0.790.85

#### Learned Metric $L^T L$

Top 2 identified Neurons

### Aim Summary and Contributions

- A novel method that proposes learning a metric for change detection
- Improves change detection performance
- Provides interpretable metric that helps identify underlying changes of interest

#### **Publications**

C. Uzray, N. Ahad, M. Abazou, E. Dyer, "Detecting change points in neural population activity with contrastive metric learning", *IEEE Conference on Neural Engineering*, 2023

N. Ahad, E. Dyer, K. Hengen, Y. Xie, M. Davenport, "Learning Sinkhorn Divergences for Change Point Detection", *In revision, IEEE Transactions on Signal Processing* 

#### Improving Machine Learning Models

# Aim 4. Unsupervised domain adaptation for time series through selective channel masking



### Generalizing trained ML models on Newer Data



Trained Machine learning models can fail to generalize as *test-time data distributions change!* 

How to adapt and transfer a trained multi channel classification model on new data ?

### **Unsupervised Domain Adaptation**

Adapt supervised source domain models to unsupervised target domains

 $X_s$ : Source domain data  $Y_s$ : Source domain labels available  $X_T$ : Target domain data (unlabeled)

Popular strategy for Unsupervised Domain adaptation:

1. Supervised classification on available source labels

2 . Learn representations where *source and target aligned/invariant* 

#### Commonly used existing approach



### **Unsupervised Domain Adaptation**



Toy example for aligning domains

Commonly used existing approach



 $\min_{\theta,\psi} \mathcal{L}_{CE}(f_{\psi}(f_{\theta}(X_s)), Y_s) + D\left(f_{\theta}(X_s), f_{\theta}(X_t)\right)$ 

Supervised Cross Entropy loss on available source labels "Distance" or "Align" loss between source and target repres. Could be: Adversarial, MMD, Sinkhorn, etc.

Assumption to work: *Source and Target points for the same class closer than other classes* 

## Domain Shifts in Time Series are Channel

For multi channel time series, domain shifts can be more severe in some channels



Large shift in blue channel across source and target



Domain adaptation method likely to fail



A possible solution, ignoring blue channels



Domain adaptation method likely to succeed

Can we learn to ignore certain channels to improve domain adaptation?

### **Proposed Method**



Dom. adapt. for aggregated reps.

Sinkhorn distance:  $S_{\gamma}$ Cross Entropy:  $\mathcal{L}_{CE}$ 

### Signal Selection and Screening Layer

#### Downweighs and aggregates channels

$$\boldsymbol{z}_a = f_{\boldsymbol{K},\boldsymbol{Q}}\left(\left[\boldsymbol{z}^1, \boldsymbol{z}^2, ..., \boldsymbol{z}^C\right]\right)$$

Input: Representations from each channel,  $m{z}_c \in \mathbb{R}^d$ Learnable parameters:  $m{K}, m{Q} \in \mathbb{R}^{d imes d}$ 

1. Obtain *query* and *key* embeddings for each channel

$$egin{aligned} m{q}^c &= m{Q}m{z}_c \ m{k}^c &= m{K}m{z}_c \end{aligned}$$

#### 2. Obtain weights

$$\boldsymbol{w} = \operatorname{softmax}\left(\frac{1}{\tau}\left[\frac{1}{\sqrt{d}}\left((\boldsymbol{q}^{1})^{\mathsf{T}}\boldsymbol{k}^{1},\ldots,(\boldsymbol{q}^{C})^{\mathsf{T}}\boldsymbol{k}^{C}\right)\right]\right)$$

3. Aggregate channel representations

$$\boldsymbol{z}^{a} = \operatorname{vec}\left(\boldsymbol{w} \odot \boldsymbol{Z}\right) = \operatorname{vec}\left(\left[w^{1}\boldsymbol{z}^{1}, w^{2}\boldsymbol{z}^{2}, ..., w^{C}\boldsymbol{z}^{C}\right]\right).$$

#### Signal selection & Screening Layer



#### **Experiments Datasets**

Evaluated our method on

٠

٠

- 1. Simulated data. 4 channels
  - Normally distributed channels whose mean values shift to get 4 classes.
  - Mean of 1 random selected channel shifted for each class to get target domain
- 2. Real world datasets included:

a). UCIHAR 9 channels:

- Activity recognition. 5 classes (running/jog/sitting/stand/walking up stair/walking down/)
- Triaxial accelerometer data on 3 devices (Wrist, chest, hip)
- 10 pairs of users selected. 1<sup>st</sup> in pair used as source, the 2<sup>nd</sup> as target

b) HHAR 3 channels:

- Activity recognition. 5 classes
- 10 pairs of users selected. 1<sup>st</sup> in pair used as source, the 2<sup>nd</sup> as target

c) WISDM 3 channels Activity recognition

- Triaxial accelerometer data on device.
- Different type devices, ranging from different smart phones phone to different smart watches for different users Activity recognition. 5 classes
- 10 pairs of users selected. 1<sup>st</sup> in pair used as source, the 2<sup>nd</sup> as target

d) Multichannel ECG signals (12 channels),

- 5 classes (Different heat states Normal, Myocardial Infraction, Conduction disturbance, Hypertrophy, ST/T-change)
- 10 pairs of different sites. First used as source, the second as target

#### Results

#### Mean Accuracy and Macro F1 scores over 5 different runs. Higher is better

| Method    | Mean Shift |       | UCIHAR   |       | HHAR     |       | PXECG    |       | WISDM    |       | WISDM-Bal |       |
|-----------|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|-----------|-------|
| 1100100   | ACC   F1   |       | ACC   F1 |       | ACC   F1 |       | ACC   F1 |       | ACC   F1 |       | ACC   F1  |       |
| Sup       | 43.12      | 0.423 | 77.04    | 0.750 | 59.40    | 0.543 | 63.51    | 0.366 | 64.90    | 0.504 | 65.84     | 0.521 |
| DANN      | 71.32      | 0.701 | 82.91    | 0.857 | 71.27    | 0.678 | 62.87    | 0.347 | 67.94    | 0.567 | 73.86     | 0.683 |
| AdvSKM    | 74.31      | 0.712 | 85.12    | 0.813 | 63.25    | 0.616 | 62.98    | 0.372 | 69.92    | 0.581 | 71.19     | 0.611 |
| CoDATS    | 54.31      | 0.531 | 86.34    | 0.856 | 68.79    | 0.686 | 66.30    | 0.366 | 68.35    | 0.548 | 75.15     | 0.665 |
| CDAN      | 79.54      | 0.813 | 84.59    | 0.836 | 70.06    | 0.704 | 64.29    | 0.375 | 70.12    | 0.517 | 70.29     | 0.661 |
| SASA      | 63.72      | 0.587 | 80.75    | 0.791 | 65.85    | 0.641 | 66.47    | 0.401 | 67.60    | 0.564 | 82.81     | 0.781 |
| DeepCoral | 82.34      | 0.841 | 86.53    | 0.851 | 66.16    | 0.690 | 62.60    | 0.346 | 72.72    | 0.605 | 74.31     | 0.649 |
| CLUDA     | 78.21      | 0.802 | 82.45    | 0.854 | 67.03    | 0.641 | 64.92    | 0.324 | 65.57    | 0.504 | 73.77     | 0.699 |
| SinkDiv   | 73.11      | 0.713 | 85.13    | 0.876 | 69.64    | 0.720 | 64.97    | 0.376 | 67.16    | 0.578 | 70.98     | 0.648 |
| Raincoat  | 73.11      | 0.713 | 89.13    | 0.873 | 62.11    | 0.603 | 66.22    | 0.357 | 62.11    | 0.523 | 69.09     | 0.727 |
| SSSS-TSA  | 99.01      | 0.985 | 90.12    | 0.901 | 72.19    | 0.737 | 66.38    | 0.419 | 75.19    | 0.635 | 83.57     | 0.816 |

Our method performs, SSSS-TSA, performs better on most datasets as compared to popular baselines

### Performance Under Enforced Channel Shifts

To further test our method, we created more severe domain shifts to existing domain shift scenarios in UCIHAR datasets.

This was done by varying the number of target channels that were:

- 1. Adding noise channels.
- 2. Saturating channels
- 3. Dropping Channels



Our proposed method SSSS-TSA much more robust to such corruptions

#### **Examples of Weights Learned to Select Channels**

Example of weights learned by channel selection layer on UCIHAR dataset



Methods learns to give smaller weights to channels with large shifts across source and target domain

1. Proposed a new domain adaptation method based on channel selection

- 2. Can downweigh channels with severe corruptions for improved domain adaptation
- 3. Learned weights can help interpret what channels are important for classification

#### **Paper submitted**

N. Ahad, M. Davenport, E. Dyer, "*Time series domain adaptation via channel-selective representation alignment*", under review 2024

## Summary of Thesis

- 1. Multiple change point detection in streaming data settings
- 2. Using change detection for label efficient supervised learning
- 3. Using supervision tools from machine learning to improve change detection
- 4. Improving supervised models in the presence of distribution shifts



### Publications

#### **Journal papers and Pre-prints**

1. **N. Ahad**, S. Sonenbum, M. Davenport, S. Sprigle, "Validating a Wheelchair In-Seat Activity Tracker", *Assistive Technology*, 2021 2. **N. Ahad**, M. Davenport, Y. Xie, "Data Adaptive Symmetrical CUSUM", *Sequential Analysis*, 2024

3. N. Ahad, E. Dyer, K. Hengen, Y. Xie, M. Davenport, "Learning Sinkhorn divergences for supervised change point detection", in revision, IEEE Transactions on Signal Processing, arxiv-preprint 2202.04000

4. N. Ahad, M. Davenport, E. Dyer, "Time series domain adaptation via channel-selective representation alignment", preprint 2024

#### **Conference papers and peer-reviewed abstracts**

1.N. Ahad, M. Davenport, "Semi-supervised Sequence Classification through Change Point Detection", AAAI, 2021
 2.C. Uzray\*, N.Ahad\*, M. Azabou, E. Dyer, "Detecting change points in neural population activity with contrastive metric learning", IEEE Conference on Neural Engineering, 2023

3. N.Ahad\*, N. Nadagouda\*, E. Dyer, M. Davenport, "Active learning for time instant classification", DMLR workshop, ICML 2023

4. M. Azabou, M. Mendelson, N.Ahad, M.Sorkin, S. Thakook, C. Uzray, E.Dyer, "Relax, it doesn't matter how you get there: A new self-supervised approach for multitimescale behavior analysis", *NeurIPS*, 2023

5.F. Zhu, A. Sedler, H. Grier, N. Ahad, M. Davenport, M. Kaufman, A. Giovannucci, C.Pandarinath "Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time ", *NeurIPS*, 2021
6.J. Quesada, L. Sathidevi, R. Liu, N. Ahad, J. M. Jackson, M. Azabou, ..., E. L. Dyer "MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction ", *NeurIPS Datasets and Benchmarks Track*, 2022
7.A.D. McRae, A. Xu, J. Jin, N.Nadagouda, N. Ahad, P. Guan, S. Karnik, M. Davenport," Delta distancing: A Lifting Approach to localizing items from user comparisons". *ICASSP*, 2022

## Acknowledgements

#### My advisor and collaborators

- Mark Davenport
- Sharon Sonenblum
- Yao Xie
- Eva Dyer
- Namrata Nadagouda
- Carolina Uzray
- Mehdi Azabou

#### Labmates & wider COTN group

#### Family!

#### **Research Support**



# Questions

#### Paraplegic Wheelchair Users & Sepsis

- 46% of people with spinal cord injuries develop pressure ulcers<sup>1</sup>
- 20% require expensive surgeries to manage these ulcers<sup>2</sup>
- When infected, these ulcers can lead to sepsis



 N.S.C.I.S.C. (2015). Annual statistical report by the national spinal cord injury statistical center.
 Saunders, L. et. al... Association of race, socioeconomic status, and health care access with pressure ulcers after spinal cord injury. Archives of Physical Medicine and Rehabilitation, 93(6), 972–977. https://doi.org/10.1016/j.apmr.2012. 02.004,

### Managing Pressure Ulcers through Pressure Offloading

Clinical experts recommended pressure relief movements, called weight shifts

But:

- 1. Wheelchair users often forget to perform these weight shifts
- 2. Large scale study needed to understand relationship between weight shift frequency and ulcer development



Goal: Design an in-seat activity tracker for wheelchair users Akin to a Fitbit for wheelchair users

### WISAT: Wheelchair In-seat Activity Tracker



#### Tracker should work with different types of cushions



#### Dataset

- 8 minute training protocol for providing training data where 20 participants performed different movements
- High resolution mat placed above cushion for providing:
  - 1. Identifying timestamps in the protocol where users perform weight shifts
  - 2. Ground truth for sufficient pressure offloading



High resolution mat

Pressure offloading ground truth

Goal: use pressure mat beneath cushion to detect these pressure offloading



Can't use this high resolution mat directly!

 Extremely expensive
 Not an ideal contact surface for extended use

## Challenging problem

- Different cushions have different dampening behavior
- Sensor mat can slide beneath the cushion
- Training data is relatively not that extensive
- Makes it difficult to apply neural networks directly on sensor data

Training: precision and recall > 90% Validation: mean precision and mean recall < 65%

#### Poor generalization to real world settings

### Using Domain Knowledge

Rather than using raw sensor values, computed three features with the help of domain experts:

1. Center of Pressure Medial lateral  $(COP_{ML})$ 2.Center of Pressure Anterior Posterior  $(COP_{AP})$ 3. Total Load (sum of sensor values)





**ML** direction

AP direction

### Weight Shift Classifier

- 3 features *COP<sub>ML</sub>*, *COP<sub>AP</sub>*, and Total Load to train a *support vector machine (SVM) classifier*
- Unlike black box models like neural networks, SVMs. can provide a quadratic expression relating features to output



### Performance

#### **Precision:**

Of all detected weight shift segments, how many true weight shift segments

#### **Recall:**

Of all true weight shift segments, how many were detected correctly

(Higher is better)

Mean Precision score: **0.81** Mean Recall score: **0.80** 

Performance not 99% because of nature of the problem !



## How difficult a problem? Consider Occupancy Detection



Supervised classifier fails as data distribution changes
## **Unsupervised Change Point Detection**

Use *unsupervised change point detection* in place of a supervised classifier







## **Change Detection**



Goal: Identify where change points ( $n_c$ ) are located in a time series