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Time Series Data is All Around Us
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Require analyzing time series data
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Detecting Changes in Temporal Data

* Process control, vital signs, detecting network attacks, etc.
* Need to identify these changes quickly



Challenges in Change Detection

Modern applications require identifying changes which are challenging to detect

* Changes between complicated, non-parametric distributions
 Multivariate signals

Some changes important, some not..
* Detecting multiple changes
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Classifying Temporal Data

Many applications require classifying time series data into different classes

For example:

Activity recognition

Stair up

|
|
» <
<« LB
|
|

walking running

|
|
<
» ] <« »
|
|
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Machine learning models trained through supervision to classify sub-sequences
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Challenges in Learning Supervised ML Models

Developing machine learning for the real-world is challenging

* Training data can be /imited

e Supervised models can perform poorly in real-world settings under
distribution shifts



Supervised Models in the Real World

Training data

Class 1 «—>
Class 2 +«—>

Learned Classifier ---

Seq.
values

Supervised classifier fails as data distribution changes



Common Theme

Common theme between change detection and machine learning classification?

Stairup ! walking | running
T —

Bk

change change
* Machine learning classification models:

- Learn separability between different categories of interest through examples
* Change points:
- Identify where data distributions become different

A common theme: Separability between data distributions

Leverage this common theme to see how machine learning and change detection can benefit each other ?
8



Overview of Thesis

Change detection

Machine Learning Models

Unsupervised
change detection

Label efficiency

Improved
change detection

Robust to
distribution shifts

Proposes new methods that show how:

e e - - - ———

1 Change detection can help machine learning
2. Machine learning can help improve change detection



Four Main Aims of Thesis

1. Multiple change point detection in streaming data settings
2. Using change detection for label efficient supervised learning
3. Using supervision tools from machine learning to improve change detection

4. Improving supervised models in the presence of distribution shifts

Unsupervised

Label efficiency
change detection

Improved
change detection

-
e

Robust to
distribution shifts
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Improving Change Detection

Aim 1. Multiple change point detection in streaming data settings

Unsupervised i Label efficiency
change detection

Robust to

Improved
distribution shifts

change detection




Sequential Change Detection

Background: Identify multiple change points sequentially within streaming manner

Wheelchair occupancy real-world data
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1. Wheelchair activity tracker 2. Pressure sensor mat 3. Pressure sensor readings

(beneath seat cushion ) (1] Sonenblum et. al.



Change Point Detection

Post-change
f@l distribution
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Sequential Change Point Detection

Testing at instance t for a change point before instance t

Null hypothesis: no-change
- All instances x; i.i.d. ~ fa, = N (po,05)

Alternate hypothesis: change at n.:
- Instances x;. t0 Xxp,__1 ~ fg, = N(zo,3)
- Instances x, tox; ~ fg, = N(u1,0?)

Log likelihood ratio test for a change at n,

Take maximum of these ratios over all change point instances

Compare to a threshold b to detect change

ne—1 t
LHIX) =[] foo(m) ][] fou ()
1=1 =N

Nec
i—n. foo (1)
¢ = max (!
1<n.<t ¢
/> b :



Post-change distribution 8, known

- Recursive formulation:

f91 (51375> i
f9o (3375)) ’

St = (St—l + log
where,

(St_1)+ — ma:x:((), St—l)

Compare to threshold to detect change S: > b

15
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GLR Change Detection

Post-change distribution 6, unknown

- Use MLE to estimate post-change distribution

- Non recursive /* = max max E log Jo.(@
1<7’Lc<t Gt ; feo
1=N¢
i,
ly >b

- Compare to threshold to detect change

Once a change is detected, the corresponding post-change distribution is used as the
pre-change distribution and the procedure is restarted to detect multiple change points.
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Problem With CUSUM and GLR

Log Likelihood ratio is asymmetrical
- Example: Joint changes in mean and variance

Change from low variance to high variance Change from high variance to low variance

|

Post Change Post Change
Pre Change

— — — . Likelihood at post mean — — — . Likelihood at post mean

Pre Change

fo,(x)
fo.(x) Likelihood ratio larger
o

log

X

1. N(1,1) — N(10,3) 2. N(10,3) — N (1,1) 17



Asymmetric Change Statistic

In streaming settings, difficult to set detection threshold b

250 Signal 250 Signal
! Signal ! —— Signal
! X Detected Change : X Detecéed Change
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Missed change points False change points e



Sequential Change Point Detection

CUSUM, GLR are based on likelihood ratio methods and are quick to detect changes

These methods, however, are asymmetrical which makes it difficult to set a detection
threshold a priori to detect multiple change points

Objective: Develop symmetrical sequential change detection and provide results that relate
detection delay and false alarm rate
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Proposed Method

Data Adaptive Symmetrical CUSUM (DAS-CUSUM)

Estimate post-change 6, using window of length w WWMW

St = (575—1)Jr + St i

Sy = (Sp-1)" +log ﬁzt Ezzi + D1 (fo. (@)l fg,(2))) — v \\/\/W‘\/VWNWM
oA )
|

Two additional terms Time

Eo, [st] = Drr(01,600) + Dxr(60,01) — v

IE90 [St] — U
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EDD vs ARL

-

o

Theorem 1: For a given ARL (y), the expected detection delay (EDD)for a
change from distributionx ~ N(0y) tox ~ N(61) ,which is unkown and estimated using

a window of length w (as w— 0),is given by:
B logy + o(1)
8o (Dxcr.(01,00) + Dicr.(6p,01)) + log(1 — %)

EDD + w.

Y

CUSUM result! where post-change distribution known: EDD =

logvy 4+ 0(1)
Dgr1,(61,00)

- Symmetrical term in the denominator

HLorden, 1971]

y + ARL

' By : pre-change dist.

' 0, : post-change dist.

| Dy : KL Divergence

w: window length to

| estimate post-change dist.

________________________________
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Real-world Results

Detecting changes using GLR

1400 Detecting changes using GLR
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Aim Summary & Contributions

1.Proposed a symmetrical sequential change detection procedure
2. A symmetrical statistic makes it easier to set a threshold for detecting multiple changes
3. Provided theoretical & empirical results that relate detection delay with false alarms

4. Used change detection to solve a real-world problem where supervised classifiers can fail

Publication

N. Ahad, M. A. Davenport, and Y. Xie, “Data-adaptive symmetric CUSUM for sequential change detection”,
Sequential Analysis, 43 (1), pp. 1-27, 2024

27



Improving Machine Learning Models

Aim 2. Using change points for semi-supervised learning

Change detection Machine Learning Models

Unsupervised ' Label efficiency
change detection

Improved i : | Bobgst to |
change detection distribution shifts




Semi-supervised Learning

* Obtaining labeled data is expensive
 Difficult to recruit participants for providing controlled, labeled data
 Difficult to annotate labels in large unstructured datasets

* Unlabeled data
* Inexpensive and widely available

Can we utilize unlabeled data to improve classification performance?

Possible solution:

Semi-supervised learning:
Leveraging unlabeled data to complement labeled data for improved learning

29



Semi-supervised Learning

@ Uniabeled
Clustering assumption: Data points sharing a class label are clustered @ Class 1

‘ Class 2

— Learned classifier

*

1. Using only available labels 2. Using unlabeled data True Labels

Semi-sup methods perform better if data is well clustered!

Objective: Use unsupervised change detection to obtained clustered
representations for improved semi-supervised sequence learning
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Proposed Method

First Step

First run an unsupervised change detection procedure on time series

1200 —

Note: Any change point detection method can be used as long if it identifies changes correctly

— Signal
. Deteced changes
1000 —

— True changes

800 |

Signal

o
600 |

o *

10
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Obtain Similar/Dissimilar pairs

Second Step

Obtain similar dissimilar sequence pairs from detected change points
Change Point

Similar pair 1 - : 1 } - | Similar pair
before change | 0 e T after change
(1,2) I (1,2)
Dissimilar pair Dissimilar pair
across change i | across change
(1,2) | | | | (2,1)

4

- Time
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Learning Semi-supervised Network Representations

Pairs from true labels and pairs from change points used to learn neural network

Representation

__ pSup Unsup
L= ‘Cpai'r + ‘Cpai’r X Neural fo(X)
S S Input sequence Network Network representation

fo

Pairs from labels Pairs from Change Points Type equation here.
o 1D CNN used as fy
,C L= D (f@ (Xl) 7f9 (XZ)) If (Xl’ X2) Slmllar Mean Empirical @istributionEIC}( )
P k=D (fo (X1), fo (Xa))  If (X1, X3) dissimilar  swsamsms

D : Distance measure
k : Constant |
fo : Neural Network B T




Train Classifier on Top of Representations

Train another classification network f,, to predict labels for learned representations fg (X),
where X is the input

Classifier

fo(X) Neural Network Y

Network Reps Representations fg(X)

. Unlabeled

O Class1

L = Lne(X).
c(¥) EA Y X;{ NE(X) /\ @ Class2
’ U
\ Y ) \ Y )
Cross entropy Negative entropy \
(labeled data) (unlabeled data)
X: Input

Y: True label fy for learning a classification boundary "N
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Synthetic Experiments

Synthetic sequence that switches between different classes

Mackay-Glass switching sequence

2 ——Class 1
Class 2
" ——~Class 3
o l15F ——C Class 4
=
©
>
3 1 M
c
[
S
© 0.5
$0.
O L

1000 2000 3000 4000 5000 6000
Sequence length
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Synthetic Experiments

Representation
X Neural Network fo(X)

Input sequence fo Network representation

T-SNE Visualizations

Auto Encoder Representations Autoencoder Representations SSL-CP Representations SSL-CP Representations
O Unlabelled points o cess1]  True labels ~  (our method) True labels
® Class 1 O Class 2 D
¢ Class 2 Class 3
Class 3 O Class 4
® Class 4
3 i \
eQ o
&o
8
O Pairs from CP
® Class 1 O Class 1
® Class 2 O Class 2
w Class 3 Class 3
® Class 4 O Class 4
Model 20 labels 30 labels 60 labels
F1 scores S ised 0.55 +0.07 0.86 + 0.04 0.95 + 0.02
. . upervise . TU. . T U. . o U.
(Higheris better) ") o oncoder 0.73 + 0.04  0.90 £ 0.02  0.98 + 0.01
SSL-CP 0.96 +0.02 0.98 + 0.01 0.99 + 0.01

SSL-CP (ER) 0.99 + 0.02 0.99 + 0.01 0.99 + 0.01 3




Real-world Experiments

Human activity recognition for fitness tracking:

e 3 axis accelerometer mounted on user’s arm

e Users do 6 activities

(Walk, run, stair up, stair down, stand, sit)

F1 scores (Higher is better)

Method F1 score

Supervised 0.45 + 0.04
Autoencoder 0.54 + 0.02
SSL-CP (All users) 0.53 + 0.03
SSL-CP (Filtered users) 0.65 £+ 0.02
SSL-CP (True CPs, all users) 0.66 + 0.01
SSL-CP-ER (Filtered users) 0.65 + 0.01
SSL-CP-ER. (True CPs, all users) 0.69 + 0.01

0.85 j
0.8+ |
0.75 - -’
0.7 0~
) P _-
B 0.65 P d ‘/' i
O - -~
2 06 _--9% .- &
. S L g
0.550" ~ 7
7/
05r ,/ =0 - Supervised
// =0~ Autoencoder
0.45,» SSL.CP
0 4? ‘ |= = Supervised on all labels
50 100 200 400 800

Number of labels
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Aim Summary and Contributions

 Method that can use detected change points for learning semi-supervised neural
network representations

* First method, that we know of, that proposes using unsupervised change-point detection
for semi-supervised learning

Publication

N. Ahad and M. Davenport, “Semi-supervised Sequence Classification through Change Point Detection”,
AAAI Conference on Artificial Intelligence, 2021.
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Improving Change Detection

Aim 3 . Using supervision from available changes to improving change detection

Unsupervised i Label efficiency

change detection

Robust to

Improved
distribution shifts

change detection
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Many signals require us to detect some kinds of changes while ignoring other kinds of changes

rmation to improve change detection performance?
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Can we use true c
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Comparing Two Distributions

First, how to compare how dissimilar two sets of points are with no distributional assumptions?

a€ R ﬁER

> T I I I

0 5 10 15

I I I
0 5 10

One way: Entropic regularized Wasserstein distances (Also known Sinkhorn Divergence)

2. Compute Cost Matrix 3. Compute Transport Plan 4. Get Sink
between pairwise using Cost between Divergence:
mass locations

il

1. Compute Histograms
and obtain mass
locations

mass locations

Total cost to move
mass locations
fromato

~ —Mass locations f = __Mass locations 8
(%)
5 5| “o
(L XY ] . . b
2 Distance Matrix = e
6 © . (]
(z — o) 8|| between all pairs o oo °
Mass locations o Mass locations B a of mass locations ﬁ ..
[$°)
Sv = e a1




Detecting Change Points Through Sinkhorn Divergence

Sinkhorn Divergence ( S,)
* For measuring the difference between two distributions

Sliding window

= o
| ]
e B |
8'7<Xp17Xf1) i I
Two sample test | . . i | . |
i 1 1] l 2 ty |
: ORI .-
1 > | |
X = Z—é(az—x@) i i i to t1
z'le | | 18v<Xp 7Xf)

Empirical distribution of

! ' | f | | >
sequence tl V tz Time

Detect change point at instances where Sinkhorn divergence greater than a specified threshold
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How to Use Supervision?

Three different distributions

We can learn a transformation L that
projects the y dimension of all points
onto x axis

L meets the supervised requirement

%

Supervised Information Requiring

Sy@d) |

should be small

s,@p |

should be large

a € R?
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Supervision for Learning L?

Use Change Points to obtain supervision for learning L

Change Point

SLy(1,2) < Spy(2,1) o, Y,

\—Y—} \—Y—} L J‘ =!4 #L #i

Sink Div between Sink Div between ! w I 3 ‘
similar l dissimilar I

Triplet pair (2,1,1) |

Sr.~(1,2) < Sp.~(1,2)

!

Triplet pair (2,1,1)

4

- Time
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How to Use Available True Change Points ?

Learn L by minimizing triplet loss

L - :
1€Trip pairs

min Z lc— (SL.~

(Xi7 Xid) - SL,’Y (Xi7 Xis>>]+

J ( J

Y

Y

Dissimilar pair in triplet Similar pair in triplet

Once L learned, use Sy, ~ in two sample tests over sliding windows to detect change points

Change statistic
(from St~ (a, B))

~—

3

(8

prem—

|

- |

| D
Sliding window

Detect change point whenever
81~ > T(threshold)




Learned Metric Improves Performance

Bee Dance Dataset

S TN — Dim1 Learned Metric LTL for Bee Dance
g il —— Dim2
0.5 4 —— Dim3
zee Diml{ 1.414  -0.396  0.109
ey Time
Dim21 -0.396 0.918 -0.496

Dim37 0.109 -0.496

Dim1 Dim?2 Dim3

Learned metric improves performance 49



Learned Metric Improves Performance

Human Activity Data (HASC) Area Under the ROC Curve (AUC) scores
1.0 k] ¢ ] — Diml (Higher is better)
i [ | Dim2

0.5 ' ; —— Dim3 Model Swch GMM  Swch Freq Bee Dance HASC (2011) HASC (2016) Yahoo ECG

e e Thsic 0.493 0.426 0.543 0.603 0.591 i i
: : - : ! : M-stats 0.947 0.437 0.494 0.605 0.751 0.737  0.844
SinkDivLM Change statistic (Our) TIRET 0.501 0.551 0.539 0.659 0.643 0.865 0.747
2 — — TIREp 0.677 0.647 0.556 0.725 0.712 0.871  0.900
E. ) . KLCPD 0.802 0.709 0.632 0.663 0.742 0.932  0.810
;.| : - SinkDiv 0.778 0.481 0.556 0.757 0.717 0.942  0.900
. . SinkDivLM  0.974 0.843 0.682 0.803 0.759 0.946 0.899

SinkDiv change statistic

0.050 1

]
|
|
|
|
|

0.025 - !

I

0.000
0 2000 4000 6000 8000 10000

Our Method (SinkDivLM) does much better! 50



Flexible Framework

min 30 fe (Sua(@ewi) = Sny (@i2)]" + ML)
1€ 1r1p palrs

L1 regularization leads to a sparse L

Sparse L can help interpretability!

Important channels in time series that are responsible for causing changes!
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Neural Sleep Stage Dataset

* Electrode arrays implanted in mice hippocampus record neural firing data
 Spike sorted data and binned 42 neurons
12 hour annotated recordings where mice switch between REM,nREM and awake states
* Available true change points to:
1. Improve state sleep state change detection
2. Learn a sparse ground metric LT L which helps interpret what neurons are
responsible for changes

[ s e, S N i e, e e e e i e e e e e oy
-

i
e
e
e i -
=

e e T ——— .
- - - - | I r -t al—

v

1Keith B Hengen, Alejandro Torrado Pacheco, James N McGregor, Stephen D Van Hooser, and Gina G Turrigiano. Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. 52

Cell, 165(1):180- 191, 2016.



Sparse Interpretable Metric

REM/nREM changes Sleep/Awake changes

e SinkDiv (Mo Learned Metric)
) T B Trse :-:t-H:-W.-ﬁ.-I*.I'-’l'-:w
Learned Metric L' L oo | }
oa | 4 ' 0 A
e i N h "'i'\-_-'-"- 4
Sink[}iulr'u'll .liE;nmbined Metric)
R Neumnﬁ ey . I :rrx :;::;::rnr[n-:';nnq;e
:E-?H EM -'J"'hqhﬂ H%J% g:-? 5 |
oy na i | |
Al \W“-ﬂ.—"r"'l - |
[T 1 N |
. .re Meuron 15 Neuron 15
Top 2 identified Neurons ] n WH"‘%N " - ]
(A) (B) (€)
SinkDiv ~ SinkDivLM
Trained on sleep/wake
Sleep/wake 0.58 0.85
REM/nREM /wake 0.79 0.72
Trained on REM/nREM
REM/nREM 0.92 0.95
REM/nREM /wake 0.79 0.82
Combined sleep metrics 53

REM/nREM /wake 0.79 0.85




Aim Summary and Contributions

* A novel method that proposes learning a metric for change detection
* Improves change detection performance

* Provides interpretable metric that helps identify underlying changes of interest

Publications

C. Uzray, N. Ahad, M. Abazou, E. Dyer, “ Detecting change points in neural population activity with contrastive
metric learning”, IEEE Conference on Neural Engineering, 2023

N. Ahad, E. Dyer, K. Hengen, Y. Xie, M. Davenport, “ Learning Sinkhorn Divergences for Change Point
Detection”, In revision, IEEE Transactions on Signal Processing
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Improving Machine Learning Models

Aim 4 . Unsupervised domain adaptation for time series through selective
channel masking

Unsupervised i Label efficiency
change detection

Robust to

Improved
distribution shifts

change detection




Generalizing trained ML models on Newer Data

Train Machine learning model Test model on user 2
on available labels from user 1 Using model trained on user 1

@ O

3 channel accelerometer

AC-tI.VIty. _walk Shifted data Model ~Walk
AN Classification . W%MW . )
T AR AN > —» - StairUp ~ > Trained on - StairUp
Model . A A AN AL e A A A ] .
- StairDown User1l - StairDown
User 1 User 2

Learned activity classifier Activity Classifier at Test time

ﬁ ‘ Stairs down

‘ Stairs up
Representation Space

Deploy trained classifier

Stairs down

‘ Stairs up

——— (Class Boundary

. Incorrect!

Class boundary

Representation space

Trained Machine learning models can fail to generalize as test-time data distributions change!

How to adapt and transfer a trained multi channel classification model on new data ?
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Unsupervised Domain Adaptation

_ _ . Commonly used existing approach
Adapt supervised source domain models to unsupervised target domains

Xs: Source domain data
Ys: Source domain labels available Neural
Xp : Target domain data (unlabeled) Network

Popular strategy for Unsupervised Domain adaptation:
1. Supervised classification on available source labels
2 . Learn representations where source and target aligned/invariant Neural

Network

min ﬁCE(fw(fG(Xs))a Ys) +D (fQ(Xs)a f9 (Xt))

( Y
Supervised Cross Entropy “Distance” or “Align” loss between
loss on available source labels source and target repres.

Could be: Adversarial, MMD, Sinkhorn, etc.

57



Unsupervised Domain Adaptation

Commonly used existing approach
Toy example for aligning domains

Representations (fy) Class Labels

J x © Source 1 Neural
& @ Source?2

Network
‘ . Source 3
“§ ’x x Target 1
.. ® &8 Target 2

“ .' xTarget3

Neural
Network

min ECE(f¢(f9(XS))7 Ys) +D (fQ(Xs)a f9 (Xt))

X |
Y

Supervised Cross Entropy “Distance” or “Align” loss between

loss on available source labels source and target repres.

Could be: Adversarial, MMD, Sinkhorn, etc.

Assumption to work: Source and Target points for the same class closer than other classes -



Domain Shifts in Time Series are Channel

For multi channel time series, domain shifts can be more severe in some channels

Source class 1 Target class 1 Source class 1 Target class 1
V™ iy /‘"-'.' MW Ny W‘\ o .ﬂ AN
WIVV’I‘WWMVMM, ‘*‘MMW A AN o P Pt
Source class 2 Target cIass 2 Source class 2 Target class 2
W//I'W
Large shift in blue channel across source and target A possible solution, ignoring blue channels
Representations fg Representations fg
@ sSrcclass 1
@ sSrcclass 2 w @ Srcclass 1
@ Srcclass 2
R Trgclass 1

R Trgclass 2 R Trgclass 1
’ ‘ x Trg class 2

Domain adaptation method likely to fail Domain adaptation method likely to succeed

Can we learn to ignore certain channels to improve domain adaptation? 59



Proposed Method

L= z\il S, (28, 25) + Lop(¥5,y,) +8.,(2°
\

)

Dom. adapt. fol each channel

Sinkhorn distance: .S,
Cross Entropy: EpE

2+ Lop(9,y)

f

Dom. adapt. for aggregated reps.

1 __Channel 1 0 Z; > | Classifier 1 | Combined
L o[ meartvmnmiv | => W - - @ s Zg Classifier
~— AN — — — —
— = 1. Separate Dom Adapt for each channel
Zl 2 .2
Three-channel Ly t i s f ; S inout ch %€
Time Series 5 o | Classifier 2 QK | .op ource input channel : xg
2 Channel 2 0 =~ _ Target input channel: x§
A AP SN T =S — Signal Ct
’*’W“WWV'\““WVl —- Selection .
WWN\ 2 s — o~ 5 - Encoder channel c : f@c
s 5 3 2 g|Sereening| = Classifier channel ¢ : fw
ANAAAS AN/ wz Zt ,,/, Layer c __ fpc(,.C
t Source reps channel c: <5 — Jo (xs)
‘ 3 3 3 Classif'er3 ¢ __ pc/.c
[ Source Domain € __ Channel 3 9 Z ' s Target repschannel c: 2§y = fg(x})
Target Domai Nl . ~C __ pc(cC
wl:prSfCthmna:1 /\WJV\N\N\I =1 w = - @" Z? Source predict channel ¢: Y, = fw (ZS)
Input Channel 2 f\/\,vs/\h«/\/\/\/ = .
| = inputChamnels | s 53 3 2. Downweigh channels and aggregate
t
t

Signal Selection & Screening layer layer: fQ,K

Z _fQK([Zivz’E? 7ZSC})
fQK([zt’zg"ath})
Aggregated src predict: ys = f¢( S)

Aggregated source reps:
Aggregated target reps: z§ =
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Signal Selection and Screening Layer

Downweighs and aggregates channels Signal selection & Screening Layer
1
L 1 2 C Channel 1 B [ q
— fK,Q ([Z ,Z ,...,Z i|) Reps T matrix D
d ‘{ 1Dotproduct
Input: Representations from each channel, Z. € R ) —>Ma'fnx _.(:
Learnable parameters: K., Q € Réxd e
. . O s o |~EE g’ ,
1. Obtain query and key embeddings for each channel r ko = *d ™ -
Dot product | |
K t
<9 > Matrix _’D]{;2
— QZC %a'nzfl
3 eights
Channel 3 Q _,D
kC — K ZC Reps Matrix | B q w
———— Dot product |
K 4
2. Obtain weights z3 7 matix| ~ CZD 3

w = softmax G [% (@)K (qC)ch)D

3. Aggregate channel representations
z% =vec(w ® Z) = vec ([w'z!, w?z?, .., w"z%]) .
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Experiments Datasets

Evaluated our method on

1. Simulated data. 4 channels
. Normally distributed channels whose mean values shift to get 4 classes.
. Mean of 1 random selected channel shifted for each class to get target domain
2. Real world datasets included:
a). UCIHAR 9 channels:
» Activity recognition. 5 classes (running/jog/sitting/stand/walking up stair/walking down/)
* Triaxial accelerometer data on 3 devices (Wrist, chest, hip)
* 10 pairs of users selected. 15t in pair used as source, the 2" as target
b) HHAR 3 channels:
e Activity recognition. 5 classes
* 10 pairs of users selected. 15t in pair used as source, the 2" as target
c) WISDM 3 channels Activity recognition
e Triaxial accelerometer data on device.
» Different type devices, ranging from different smart phones phone to different smart watches for different users
Activity recognition. 5 classes
* 10 pairs of users selected. 1t in pair used as source, the 2"d as target
d) Multichannel ECG signals (12 channels),
* 5classes (Different heat states Normal, Myocardial Infraction, Conduction disturbance, Hypertrophy, ST/T-change)
e 10 pairs of different sites. First used as source, the second as target

62



Mean Accuracy and Macro F1 scores over 5 different runs. Higher is better

Method Mean Shift UCIHAR HHAR PXECG WISDM WISDM-Bal
ACC | FI. ACC | FI ACC | FI ACC | FI. ACC| FI  ACC | FI

Sup 43.12 | 0423 77.04 | 0.750 59.40 | 0.543 63.51 | 0.366 64.90 | 0.504 65.84 | 0.521
DANN 7132 | 0.701 8291 | 0.857 71.27 | 0.678 62.87 | 0.347 67.94 | 0.567 73.86 | 0.683
AdvSKM 7431 | 0.712 85.12 | 0.813 63.25 | 0.616 62.98 | 0.372 69.92 | 0.581 71.19 | 0.611
CoDATS 5431 | 0.531 86.34 | 0.856 68.79 | 0.686 66.30 | 0.366 68.35 | 0.548 75.15 | 0.665
CDAN  79.54 | 0.813 84.59 | 0.836 70.06 | 0.704 64.29 | 0.375 70.12 | 0.517 70.29 | 0.661
SASA 63.72 | 0.587 80.75 | 0.791 65.85 | 0.641 66.47 | 0.401 67.60 | 0.564 82.81 | 0.781
DeepCoral 82.34 | 0.841 86.53 | 0.851 66.16 | 0.690 62.60 | 0.346 72.72 | 0.605 74.31 | 0.649
CLUDA 7821 | 0.802 8245 | 0.854 67.03 | 0.641 64.92 | 0.324 65.57 | 0.504 73.77 | 0.699
SinkDiv ~ 73.11 | 0.713 85.13 | 0.876 69.64 | 0.720 64.97 | 0.376 67.16 | 0.578 70.98 | 0.648
Raincoat  73.11 | 0.713 89.13 | 0.873 62.11 | 0.603 66.22 | 0.357 62.11 | 0.523 69.09 | 0.727
SSSS-TSA  99.01 | 0.985 90.12 | 0.901 7219 | 0.737 66.38 | 0.419 75.19 | 0.635 83.57 | 0.816

Our method performs, SS55-TSA, performs better on most datasets as compared to popular baselines
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Performance Under Enforced Channel Shifts

To further test our method, we created more severe domain shifts to existing domain shift scenarios in UCIHAR datasets.

This was done by varying the number of target channels that were:
1. Adding noise channels.

2. Saturating channels
3. Dropping Channels

0.91 0.91 0.9

B Source Sup.
B SinkDiv
Emm DANN
EEm SSSS-TSA

2
o
e
o

Macro F1
Macro F1
Macro F1
o
[e)]

o
w
o
W
<
w

0.0- 0.0-

0.0
2 4 6 2 4
(A) Channels affected by noise (B) Channels saturated ©

Channels dropped

Our proposed method SS55-TSA much more robust to such corruptions
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Examples of Weights Learned to Select Channels

Example of weights learned by channel selection layer on UCIHAR dataset

Source domain weights Target domain weights

oot e es? et e s aess el e et qes? es®

0.27 0.25 0.11 0.08 0.28 0.07 0.10 0.08

0.37 0

.10 0.07 0.14
- n

0.10 0.23 0.09

Class 1 Class 2 Class 5

Source

Target

Methods learns to give smaller weights to channels with large shifts across source and target domain
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Aim Summary and Contributions

1.Proposed a new domain adaptation method based on channel selection
2. Can downweigh channels with severe corruptions for improved domain adaptation

3. Learned weights can help interpret what channels are important for classification

Paper submitted

N. Ahad, M. Davenport, E. Dyer, “Time series domain adaptation via channel-selective
representation alignment”, under review 2024
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Summary of Thesis

1. Multiple change point detection in streaming data settings
2. Using change detection for label efficient supervised learning
3. Using supervision tools from machine learning to improve change detection

4. Improving supervised models in the presence of distribution shifts

Unsupervised

Label efficiency
change detection

Improved
change detection

-
e

Robust to
distribution shifts
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Questions



Paraplegic Wheelchair Users & Sepsis

* 46% of people with spinal cord injuries develop pressure ulcers?
* 20% require expensive surgeries to manage these ulcers?

 When infected, these ulcers can lead to sepsis

1. N.S.C.1.S.C. (2015). Annual statistical report by the national spinal cord injury statistical center.
2. Saunders, L. et. al... Association of race, socioeconomic status, and health care access with pressure ulcers
after spinal cord injury. Archives of Physical Medicine and Rehabilitation, 93(6), 972-977. https://doi.org/10.1016/j.apmr.2012. 02.004, 79



Managing Pressure Ulcers through Pressure Offloading

Clinical experts recommended pressure relief movements, called weight shifts

But:
1. Wheelchair users often forget to perform these weight shifts

2. Large scale study needed to understand relationship between
weight shift frequency and ulcer development

Goal: Design an in-seat activity tracker for wheelchair users
Akin to a Fitbit for wheelchair users

80



WISAT: Wheelchair In-seat Activity Tracker

User moves in the chair Sensor values change Weight shift detection

Pressure sensor
mat inserted beneath
cushion :

ML algorithms
on
sensor data

Weight Shifts

Tracker should work with different types of cushions
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Dataset

* 8 minute training protocol for providing training data where 20 participants performed
different movements

* High resolution mat placed above cushion for providing:
1. ldentifying timestamps in the protocol where users perform weight shifts

2. Ground truth for sufficient pressure offloading

Can’t use this high resolution mat directly!

1. Extremely expensive
2. Not an ideal contact surface for
extended use

provides

v

High resolution mat Pressure offloading ground truth

Goal: use pressure mat beneath cushion to detect these pressure offloading
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Challenging problem

* Different cushions have different dampening behavior
* Sensor mat can slide beneath the cushion
* Training data is relatively not that extensive

* Makes it difficult to apply neural networks directly on sensor data

Training: precision and recall > 90%
Validation: mean precision and mean recall < 65%

Poor generalization to real world settings
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Using Domain Knowledge

Rather than using raw sensor values, computed three features with the help of domain experts:

1. Center of Pressure Medial lateral (COPy;;) .
2.Center of Pressure Anterior Posterior (COP,p)

AP direction
3. Total Load (sum of sensor values)
Sensor Force

_ - T P T T T T T IhlIl'l'l'IIHIIiiih'lll'!-"Il!;':-l.'-l’l."llll‘lll!llll"l _FrontLEﬂ SEI‘ISOF
=3 1oL Poeees \ I Il = =FrontRight Sensor
@ ¢ T et ’ == =MiddleLeft Sensor
g o ] L 1 e *a»a-.}-‘-‘?— el iagtbend CELEEE MiddleRight Sensor
(I o BackLeft Sensor

0 ' l - -~ ~BackRightSensor ML direction

0 50 100

@ Sensor Features
3 | ——CoP ML
g J===cop AP
- Total load
@
m©
@

! | ' 84
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Weight Shift Classifier

e 3 features COP,;; , COP,p, and Total Load to train a support vector machine (SVM) classifier
* Unlike black box models like neural networks, SVMs. can provide a quadratic expression
relating features to output

Sensor Force
—~ B —— e n et et s e ae e s e FrONtLEFt SensOr
g _"‘ 1 1 = =FrontRight Sensor
© 10~ L T i | ’ = ==MiddleLeft Sensor
E ::\(__t‘ '''''''''''''''''''' LIS SV SIP R OR rgmdilfF:gSht Sensor
0 I I ~ ~ ~BackRightSensor
0 50 100
2 Sensor Features
f_.g .| ' J—cormL
£ s INterpretable features and an interpretable classifier
’ et shift Classifior A reliable partnership in real world noisy settings!
I ' =Predictions
Weight shift - i A= --Label
I
1

No weight shift : :
0 50 100
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Performance

Precision:
Of all detected weight shift segments,
how many true weight shift segments

Recall:
Of all true weight shift segments,
how many were detected correctly

(Higher is better)

Mean Precision score: 0.81
Mean Recall score: 0.80

Performance not 99% because of nature of the problem !

u e n
o °
| o
l..
0.2 0.4 0.6 0.8 1
Precision

cushion

® Matrx
¢ Jay2
® Roho

Outliers on Roho (air filled) cushion
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How difficult a problem?

Consider Occupancy Detection

Training data

Class 1 “«—
Seq Class 2 «—
) Learned Classifier - - -
values

i W\;'C ]
;::")
""""""" ' 'mﬂ"““““"""'“"' o Occupancy classifier

Supervised classifier fails as data distribution changes
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Unsupervised Change Point Detection

Use unsupervised change point detection in place of a supervised classifier

Wheelchair occupancy real-world data

14DD T II:: T 11 T
200} §
1000 | | L
E : L
- | [
Q 800 L
E 1 11
- 1 1
@ 600t : i
E 1 [
o | |
400 ¢ ! o
0 ' — .
0 5 10 15
Time «10%
1. Pressure sensor mat 2. Pressure sensor readings

(beneath seat cushion )



Change Detection

Change at n,

:

S
e = =0 =

Goal: Identify where change points (n. ) are located in a time series
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